若實數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,則z=2x+3y的最大值是( 。
A、0
B、
1
2
C、2
D、3
考點(diǎn):簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=2x+3y化為y=-
2
3
x+
1
3
z,
1
3
z相當(dāng)于直線y=-
2
3
x+
1
3
z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=2x+3y化為y=-
2
3
x+
1
3
z,
1
3
z相當(dāng)于直線y=-
2
3
x+
1
3
z的縱截距,
則過點(diǎn)(0,1)時,z=2x+3y取得最大值,
則zmax=3.
故選D.
點(diǎn)評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面是關(guān)于公差d>0的等差數(shù)列{an}的四個命題:
p1:?a1∈R,數(shù)列{an}是遞增數(shù)列;
P2:?a1∈R,數(shù)列{nan}是遞增數(shù)列;
p3:?a1∈R,使得數(shù)列{n2+an]是遞減數(shù)列;
p4:?a1∈R,使得數(shù)列{
an
n
]是遞減數(shù)列;
其中真命題為(  )
A、p1,p2
B、p3,p4
C、p2,p3
D、p1,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù),例如,函數(shù)f(x)=x+1(x∈R)是單函數(shù),下列命題:
①函數(shù)f(x)=x2-2x(x∈R)是函數(shù);
②若f(x)=
log2x,x≥2
x-1,x<2
是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④若函數(shù)f(x)在定義域內(nèi)某個區(qū)間D上具有單調(diào)性,則f(x)一定是單函數(shù).
其中真命題是
 
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l⊥平面α,直線m?平面β,則下列四個命題正確的是( 。
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
A、②④B、①②C、③④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列A:a1,a2,a3…,an(n≥3,n∈N*)中,令TA={x|x=ai•aj,1≤i<j≤n,i,j∈N*},cord(TA)表示集合TA中元素的個數(shù).(例如A:1,2,4,則cord(TA)=3.)若
ai+1
ai
=c(c為常數(shù),且|c|>1,1≤i≤n-1)則cord(TA)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±
2
3
x,實軸長為12,它的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)滿足約束條件
x+y-2≥0
3x-y-2≥0
x≤3
,則x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-5x+6=0},B={x|ax+2=0},且B∩∁RA=∅,則實數(shù)a的所有取值組成的集合為( 。
A、{0,-1,-
2
3
}
B、{-1,-
2
3
}
C、{1,
2
3
}
D、{
2
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要從已編號(1~50)的50枚最新研制的奧運(yùn)會特型煙花中隨機(jī)抽取5枚來進(jìn)行燃放試驗.用每部分選取的號碼間隔一樣的系統(tǒng)抽樣的方法確定所選取的5枚煙花的編號可能是(  )
A、5,10,15,20,25
B、1,2,3,4
C、3,13,23,33,43
D、2,4,8,16,32

查看答案和解析>>

同步練習(xí)冊答案