【題目】在直角坐標系xOy中,已知傾斜角為α的直線l過點A(2,1).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系曲線C的極坐標方程為ρ=2sinθ,直線l與曲線C分別交于P,Q兩點.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標方程.
(2)求|AP||AQ|的值.
【答案】(1); x2+y2=2y;(2)3
【解析】
(1)由直線的傾斜角與所過定點寫出直線的參數(shù)方程,再利用極坐標與直角坐標的互化公式,求得曲線的直角坐標方程,即可得到答案.
(2)將直線的參數(shù)方程代入曲線的方程,得到關于的一元二次方程,再由根與系數(shù)的關系,以及的幾何意義,即可求解的值.
(1)由題意知,傾斜角為α的直線l過點A(2,1,
所以直線l的參數(shù)方程為 (t為參數(shù)),
因為ρ=2sin θ,所以ρ2=2ρsin θ,
把y=ρsin θ,x2+y2=ρ2代入得x2+y2=2y,
所以曲線C的直角坐標方程為x2+y2=2y.
(2)將直線l的參數(shù)方程代入曲線C的方程,得t2+(4cos α)t+3=0 ,
設P、Q的參數(shù)分別為t1、 t2,由根與系數(shù)的關系得
t1+t2=-4cos α,t1t2=3,且由Δ=(4cos α)2-4×3>0,
所以|AP|·|AQ|=|t1|·|t2|=3.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.向量與是共線向量,則A,B,C,D必在同一直線上
B.向量 與平行,則與的方向相同或相反
C.向量與向量是平行向量
D.單位向量都相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設三個數(shù)成等差數(shù)列,記對應點的曲線是.
(1)求曲線的方程;
(2)已知點,點,點,過點任作直線與曲線相交于兩點,設直線的斜率分別為,若,求滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,動點P,Q從點出發(fā)在單位圓上運動,點P按逆時針方向每秒鐘轉弧度,點Q按順時針方向每秒鐘轉弧度,則P,Q兩點在第2019次相遇時,點P的坐標為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
①球的半徑是球面上任意一點與對球心的連線;
②球面上任意兩點的連線是球的直徑;
③用一個平面截一個球,得到的截面是一個圓;
④用一個平面截一個球,得到的截面是一個圓面;
⑤以半圓的直徑所在直線為軸旋轉形成的曲面叫做球;
⑥空間中到定點的距離等于定長的所有的點構成的曲面是球面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某地一天從時的溫度變化曲線近似滿足函數(shù).
(1)求該地區(qū)這一段時間內溫度的最大溫差.
(2)若有一種細菌在到之間可以生存,則在這段時間內,該細菌最多能存活多長時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】日本數(shù)學家角谷靜夫發(fā)現(xiàn)的“ 猜想”是指:任取一個自然數(shù),如果它是偶數(shù),我們就把它除以,如果它是奇數(shù)我們就把它乘再加上,在這樣一個變換下,我們就得到了一個新的自然數(shù)。如果反復使用這個變換,我們就會得到一串自然數(shù),猜想就是:反復進行上述運算后,最后結果為,現(xiàn)根據(jù)此猜想設計一個程序框圖如圖所示,執(zhí)行該程序框圖輸入的,則輸出值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com