【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且在軸上截得的弦長(zhǎng)為.

(1)求動(dòng)圓的圓心點(diǎn)的軌跡方程

(2)過(guò)點(diǎn)的動(dòng)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),平面內(nèi)是否存在定點(diǎn),使得直線(xiàn)分別交兩點(diǎn),使得直線(xiàn)的斜率,滿(mǎn)足?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (2)

【解析】試題分析:(1) 設(shè)動(dòng)圓圓心,設(shè)圓交軸于兩點(diǎn),連接,則,坐標(biāo)化條件易得所求的軌跡方程;

(2)直線(xiàn)的方程為,由,結(jié)合韋達(dá)定理可知:直線(xiàn)的斜率為,由的直線(xiàn)的方程為,

代入拋物線(xiàn)方程,可解得: ,同理,于是直線(xiàn)的斜率,從而得到.

試題解析:

(1)設(shè)動(dòng)圓圓心,設(shè)圓交軸于兩點(diǎn),連接

,過(guò)點(diǎn),則點(diǎn)的中點(diǎn),

顯然

于是,化簡(jiǎn)整理得,故的軌跡方程為.

(2)設(shè) ,

設(shè)直線(xiàn)的方程為,由

,所以,直線(xiàn)的斜率為,

的直線(xiàn)的方程為

于是,又,則,

于是,同理,

于是直線(xiàn)的斜率,

,即,

恒成立,

,解得,故 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“中華好詩(shī)詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩(shī)詞經(jīng)典的熱潮.某社團(tuán)為調(diào)查大學(xué)生對(duì)于“中華詩(shī)詞”的喜好,從甲、乙兩所大學(xué)各隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,并整理得到如下頻率分布直方圖:

根據(jù)學(xué)生每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,可以將學(xué)生對(duì)于“中華詩(shī)詞”的喜好程度分為三個(gè)等級(jí) :

(Ⅰ)從甲大學(xué)中隨機(jī)選出一名學(xué)生試估計(jì)其“愛(ài)好”中華詩(shī)詞的概率;

()從兩組“癡迷”的同學(xué)中隨機(jī)選出2人,記為選出的兩人中甲大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望;

()試判斷選出的這兩組學(xué)生每天學(xué)習(xí)“中華詩(shī)詞”時(shí)間的平均值的大小,及方差的大小.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項(xiàng)和為, .

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓,過(guò)軸的垂線(xiàn)垂足為,點(diǎn)滿(mǎn)足.求點(diǎn)的軌跡方程;

過(guò)的直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn)過(guò)作與垂直的直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),求證 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請(qǐng)10位客人做一個(gè)游戲.第一輪游戲中,主持人將標(biāo)有數(shù)字1,2,…,10的十張相同的卡片放入一個(gè)不透明箱子中,讓客人依次去摸,摸到數(shù)字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數(shù)字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數(shù)字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準(zhǔn)備的禮物.已知客人甲參加了該游戲.

(1)求甲拿到禮物的概率;

(2)設(shè)表示甲參加游戲的輪數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線(xiàn)過(guò)點(diǎn)且與軸不重合, 交圓兩點(diǎn),過(guò)的平行線(xiàn)交于點(diǎn).

(1)證明為定值,并寫(xiě)出點(diǎn)的軌跡方程;

(2)設(shè),過(guò)點(diǎn)作直線(xiàn),交點(diǎn)的軌跡于兩點(diǎn) (異于),直線(xiàn)的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn), ,則下列說(shuō)法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

C. 把曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,再把得到的曲線(xiàn)上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線(xiàn)

D. 把曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,再把得到的曲線(xiàn)上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).

)求證: 平面;

)求證: 平面;

)在棱上求作一點(diǎn),使得,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案