如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1∥BC且B1C1=
1
2
BC
,二面角A1-AB-C是直二面角
(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)根據(jù)勾股定理的逆定理,可得AB⊥AC,又因?yàn)樗倪呅蜛1ABB1是正方形,所以AB⊥AA1,從而得到AB⊥平面AA1C,再證AB∥A1B1,可得A1B1⊥平面AA1C;
(2)取BC中點(diǎn)D,連接AD,B1D,C1D.證明四邊形B1C1DB是平行四邊形,可得C1D∥B1B,進(jìn)而可證AD∥平面A1C1C;同理,B1D∥平面A1C1C,利用面面平行的判定,可得平面ADB 1∥平面A1C1C,從而可得AB1∥平面A1C1C
解答: 證明:(1)因?yàn)锳B=AC,BC=
2
AB

所以AB2+AC2=BC2,所以AB⊥AC.
又因?yàn)樗倪呅蜛1ABB1是正方形,所以AB⊥AA1
又因?yàn)锳A1∩AC=A,所以AB⊥平面AA1C.
因?yàn)樗倪呅蜛1ABB1是正方形,所以AB∥A1B1,
所以A1B1⊥平面AA1C
(2)取BC的中點(diǎn)D,連接AD,B1D,C1D
因?yàn)锽1C1∥BC且B1C1=
1
2
BC

所以B1C1DB是平行四邊形,故C1D1∥B1B,且C1D1=B1B
又A1A∥B1B且A1A=B1B,所以A1A∥C1D,且A1A=C1D
所以A1ADC1是平行四邊形
所以A1C1∥AD,所以AD∥平面A1C1C
同理B1D∥平面A1C1C
又因?yàn)锽1D∩AD=D,所以平面ADB1∥平面A1C1C
所以AB1∥平面A1C1C
點(diǎn)評:本題考查線面平行、線面垂直,掌握線面平行、線面垂直的判定方法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義
a
?
b
=
a
-2
b
a
b
,若
a
=(1,2),
b
=(3,-2),則與
a
?
b
反向的向量為( 。
A、(5,-6)
B、(5,6)
C、(-5,6)
D、(-5,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2
2
,C1H⊥平面AA1B1B,且C1H=
5

(1)求異面直線AC與A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,已知b=3且角A,B,C依次成等差數(shù)列,
(Ⅰ)若邊a,b,c依次成等比數(shù)列,求△ABC的面積;
(Ⅱ)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)F(0,1)且與直線y=-1相切的動(dòng)圓的圓心軌跡為M,過點(diǎn)F且斜率為1的直線l交M于A、B兩點(diǎn),動(dòng)點(diǎn)Q也在M上,且在A、B之間(不與A或B重合).
(1)求M的軌跡方程及線段AB的長度|AB|.
(2)求△ABQ的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面四邊形ABCD中,AB=BC=CD=a,∠B=90°,∠BCD=135°,沿對角線AC將四邊形折成直二面角,如圖所示:

(Ⅰ)求證:AB⊥平面BCD;
(Ⅱ)求二面角B-AD-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|x+1|.
(Ⅰ)解不等式f(x)≥3
(Ⅱ)如果?x∈R,都有f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AB=BC,以AB為直徑的⊙O交AC于D,過D作DE⊥BC,垂足為E,連接AE交⊙O于點(diǎn)F,求證:CE2=EF•EA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正方形的四個(gè)頂點(diǎn)均在y=-4x3+3x的圖象上,則這樣的正方形有
 
個(gè).

查看答案和解析>>

同步練習(xí)冊答案