已知方向向量為v=(1,)的直線(xiàn)l過(guò)點(diǎn)(0,)和橢圓C:=1(a>b>0)的焦點(diǎn),且橢圓C的中心關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上.

(1)求橢圓C的方程;

(2)是否存在過(guò)點(diǎn)E(-2,0)的直線(xiàn)m交橢圓C于點(diǎn)M、N,且滿(mǎn)足·cot∠MON≠0(SO為原點(diǎn))?若存在,求直線(xiàn)m的方程;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)直線(xiàn)l:y=,①

  過(guò)原點(diǎn)垂直于l的直線(xiàn)方程為y=x,②

  解①②得x=

  因?yàn)闄E圓中心O(0,0)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上,所以=3,又直線(xiàn)l過(guò)橢圓焦點(diǎn),于是該焦點(diǎn)坐標(biāo)為(2,0).

  ∴c=2,a2=6,b2=2.

  故橢圓C的方程為=1.③

  (2)設(shè)M(x1,y1),N(x2,y2),

  當(dāng)直線(xiàn)m不垂直于x軸時(shí),直線(xiàn)my=k(x+2),

  代入③,整理得(3k2+1)x2+12k2x+12k2-6=0,

  則x1+x2,x1x2

  |MN|=

  =

  點(diǎn)O到直線(xiàn)MN的距離d=

  ∵·cot∠MON,

  即||||cos∠MON=≠0,

  ∴||||sin∠MON=,

  即(3k2+1).

  整理得k2.∴k=±

  當(dāng)直線(xiàn)m垂直于x軸時(shí),也滿(mǎn)足S△OMN

  故直線(xiàn)m的方程為y=或y=或x=-2.

  經(jīng)檢驗(yàn)上述直線(xiàn)均滿(mǎn)足·≠0,

  所以所求直線(xiàn)方程為y=或y=或x=-2.


提示:

本題主要考查直線(xiàn)、橢圓及平面向量的基本知識(shí),平面解析幾何的基本方法和綜合解題的能力.利用橢圓的基本概念求得其標(biāo)準(zhǔn)方程,借助弦長(zhǎng)公式,求出|MN|用k表示,求出S△DMN,利用其結(jié)果可知k的值.在解題中,要注意對(duì)斜率的討論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:022

已知直線(xiàn)l的一個(gè)方向向量v=(-2,4),則直線(xiàn)l的斜率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶八中2007級(jí)高三數(shù)學(xué)模擬考試(文) 題型:044

已知方向向量v=(1,)的直線(xiàn)l過(guò)點(diǎn)(0,-2)和橢圓C:(a>b>0)的焦點(diǎn),且橢圓C的中心關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)E(-2,0)的直線(xiàn)m交橢圓C于點(diǎn)M、N,且滿(mǎn)足(O為原點(diǎn).)求直線(xiàn)m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省常州二中2008高考一輪復(fù)習(xí)綜合測(cè)試5、數(shù)學(xué)(文科) 題型:044

已知以向量v(1,)為方向向量的直線(xiàn)l過(guò)點(diǎn)(0,),拋物線(xiàn)C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在該拋物線(xiàn)上.

(Ⅰ)求拋物線(xiàn)C的方程;

(Ⅱ)設(shè)AB是拋物線(xiàn)C上兩個(gè)動(dòng)點(diǎn),過(guò)A作平行于x軸的直線(xiàn)m,直線(xiàn)OB與直線(xiàn)m交于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省大慶實(shí)驗(yàn)中學(xué)2011屆高三上學(xué)期期末考試數(shù)學(xué)理科試題 題型:044

已知以向量v(1,)為方向向量的直線(xiàn)l過(guò)點(diǎn)(0,),拋物線(xiàn)C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在該拋物的準(zhǔn)線(xiàn)上.

(Ⅰ)求拋物線(xiàn)C的方程;

(Ⅱ)設(shè)A、B是拋物線(xiàn)C上兩個(gè)動(dòng)點(diǎn),過(guò)A作平行于x軸的直線(xiàn)m交直線(xiàn)OB于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案