【題目】如圖,在三棱柱中,是邊長為4的正方形,平面平面,,.
(1)求二面角的余弦值;
(2)在線段是否存在點(diǎn),使得?若存在,求出的值;若不存在,請說明理由.
【答案】(1).(2)存在,值為
【解析】
(1)建立空間直角坐標(biāo)系,利用平面的法向量和平面的法向量,計(jì)算出二面角的余弦值.
(2)首先利用求得點(diǎn)的坐標(biāo),由求得的值.
(1)因?yàn)?/span>為正方形,所以.
因?yàn)槠矫?/span>ABC⊥平面,且垂直于這兩個(gè)平面的交線,所以平面.由題知,,,所以.如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則,即,
令,則,,所以.
同理可得,平面的法向量為,所以.由題知二面角為銳角,所以二面角的余弦值為.
(2)存在.設(shè)是直線上一點(diǎn),且.所以.解得,,.
所以.
由,即.解得.
因?yàn)?/span>,所以在線段上存在點(diǎn),
使得.此時(shí),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若把向右平移個(gè)單位得到函數(shù),求在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從、、、這個(gè)數(shù)中一次隨機(jī)地取個(gè)數(shù),記所取的這個(gè)數(shù)的和為,則下列說法錯(cuò)誤的是( )
A.事件“”的概率為
B.事件“”的概率為
C.事件“”與事件“”為互斥事件
D.事件“”與事件“”互為對立事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】稱直角坐標(biāo)系中縱橫坐標(biāo)均為整數(shù)的 點(diǎn)為“格點(diǎn)”,稱一格點(diǎn)沿坐標(biāo)線到原點(diǎn)的最短路程為該點(diǎn)到原點(diǎn)的“格點(diǎn)距離”,格點(diǎn)距離為定值的點(diǎn)的軌跡稱為“格點(diǎn)圓”,該定值稱為格點(diǎn)圓的半徑,而每一條最短路程稱為一條半徑.當(dāng)格點(diǎn)半徑為2005時(shí),格點(diǎn)圓的半徑有________條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)紅直播平臺(tái)為確定下一季度的廣告投入計(jì)劃,收集了近6個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
廣告投入量/萬元 | 2 | 4 | 6 | 8 | 10 | 12 |
收益/萬元 | 14.21 | 20.31 | 31.8 | 31.18 | 37.83 | 44.67 |
用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
7 | 30 | 1464.24 | 364 |
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由.
(2)殘差絕對值大于2的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(i)剔除的異常數(shù)據(jù)是哪一組?
(ii)剔除異常數(shù)據(jù)后,求出(1)中所選模型的回歸方程;
(iii)廣告投入量時(shí),(ii)中所得模型收益的預(yù)報(bào)值是多少?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為,防洪堤高記為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長()要最。
(1)用表示、;
(2)將表示成的函數(shù),如限制在范圍內(nèi),最小為多少米?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com