【題目】已知雙曲線E的左、右焦點(diǎn)分別為F1,F2,P是雙曲線E上的一點(diǎn),且|PF2|=2|PF1|,若直線PF2與雙曲線E的漸近線交于點(diǎn)M,且M為PF2的中點(diǎn),則雙曲線E的漸近線方程為( )
A.y=±B.y=±C.y=±2xD.y=±3x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個(gè)本科專(zhuān)業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.
(1)應(yīng)從該學(xué)院三個(gè)專(zhuān)業(yè)的畢業(yè)生中分別抽取多少人?
(2)國(guó)家鼓勵(lì)大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個(gè)行業(yè)的學(xué)生有5人為方便統(tǒng)計(jì),將恰有三個(gè)行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、、,統(tǒng)計(jì)如下表:
公務(wù)員 | ○ | ○ | × | ○ | × |
教師 | ○ | × | ○ | × | ○ |
金融 | ○ | ○ | ○ | × | ○ |
公式 | × | × | ○ | ○ | ○ |
自主創(chuàng)業(yè) | × | ○ | ○ | × |
其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無(wú)該行業(yè)就業(yè)意向.
現(xiàn)從、、、、這5人中隨機(jī)抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐的底面中,,,平面,是的中點(diǎn),且
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得,若存在指出點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中不正確的是( )
A.設(shè)為直線,為平面,且;則“”是“”的充要條件
B.設(shè)隨機(jī)變量,若,則
C.若不等式()恒成立,則的取值范圍是
D.已知直線經(jīng)過(guò)點(diǎn),則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雷達(dá)圖(Radar Chart),又可稱(chēng)為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),原先是財(cái)務(wù)分析報(bào)表的一種,現(xiàn)可用于對(duì)研究對(duì)象的多維分析.圖為甲、乙兩人在五個(gè)方面的評(píng)價(jià)值的雷達(dá)圖,則下列說(shuō)法不正確的是( )
A.甲、乙兩人在次要能力方面的表現(xiàn)基本相同
B.甲在溝通、服務(wù)、銷(xiāo)售三個(gè)方面的表現(xiàn)優(yōu)于乙
C.在培訓(xùn)與銷(xiāo)售兩個(gè)方面上,甲的綜合表現(xiàn)優(yōu)于乙
D.甲在這五個(gè)方面的綜合表現(xiàn)優(yōu)于乙
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年3月,國(guó)內(nèi)新冠肺炎疫情得到有效控制,人們開(kāi)始走出家門(mén)享受春光.某旅游景點(diǎn)為吸引游客,推出團(tuán)體購(gòu)票優(yōu)惠方案如下表:
購(gòu)票人數(shù) | 1~50 | 51~100 | 100以上 |
門(mén)票價(jià)格 | 13元/人 | 11元/人 | 9元/人 |
兩個(gè)旅游團(tuán)隊(duì)計(jì)劃游覽該景點(diǎn).若分別購(gòu)票,則共需支付門(mén)票費(fèi)1290元;若合并成個(gè)團(tuán)隊(duì)購(gòu)票,則需支付門(mén)票費(fèi)990元,那么這兩個(gè)旅游團(tuán)隊(duì)的人數(shù)之差為( )
A.20B.25C.30D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,直線與拋物線交于兩點(diǎn).
(Ⅰ)若,求以為直徑的圓被軸所截得的弦長(zhǎng);
(Ⅱ)分別過(guò)點(diǎn)作拋物線的切線,兩條切線交于點(diǎn),求面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com