如圖1,若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則
S△OM1N1
S△OM2N2
=
OM1
OM2
ON1
ON2
;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1,P2,點(diǎn)Q1,Q2和點(diǎn)R1,R2,則類似的結(jié)論是什么?這個結(jié)論正確嗎?說明理由.
精英家教網(wǎng)
分析:本題考查的知識點(diǎn)是類比推理,在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時,常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).由平面中,若從點(diǎn)O所作的兩條射線OM,ON上分別有點(diǎn)M1,M2與點(diǎn)N1,N2,則三角形面積之比為:
VO-P1Q1R1
VO-P2Q2R2
=
OP1
OP2
OQ1
OQ2
OR1
OR2
(面的性質(zhì))我們可以類比在空間中相似的體的性質(zhì).
解答:精英家教網(wǎng)解:類似的結(jié)論為:
VO-P1Q1R1
VO-P2Q2R2
=
OP1
OP2
OQ1
OQ2
OR1
OR2
.(3分)
這個結(jié)論是正確的,證明如下:
如圖,過R2作R2M2⊥平面P2OQ2于M2,連OM2.過R1在平面OR2M2作R1M1∥R2M2交OM2于M1,
則R1M1⊥平面P2OQ2.由VO-P1Q1R1=
1
3
SP1OQ1•R1M1=
1
3
1
2
OP1•OQ1•sin∠P1OQ1•R1M1
=
1
6
OP1•OQ1•R1M1•sin∠P1OQ1,(6分)
同理,VO-P2Q2R2=
1
6
OP2•OQ2•R2M2•sin∠P2OQ2.(8分)
VO-P1Q1R1
VO-P2Q2R2
=
OP1•OQ1R1M1
OP2•OQ2R2M2
.(10分)
由平面幾何知識可得
R1M1
R2M2
=
OR1
OR2

VO-P1Q1R1
VO-P2Q2R2
=
OP1•OQ1•OR1
OP2•OQ2•OR2

∴結(jié)論正確.(14分)
點(diǎn)評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則=·;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1,P2,點(diǎn)Q1,Q2和點(diǎn)R1,R2,則類似的結(jié)論是什么?這個結(jié)論正確嗎?說明理由.

                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省高二下學(xué)期期中質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖1,若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則=·;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1,P2,點(diǎn)Q1,Q2和點(diǎn)R1,R2,則類似的結(jié)論是                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高二12月月考數(shù)學(xué)試卷 題型:填空題

如圖1,若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則=·;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1,P2,點(diǎn)Q1,Q2和點(diǎn)R1,R2,則類似的結(jié)論是                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(湖北卷)數(shù)學(xué)(理科) 題型:填空題

如圖1,若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則=·;如圖2,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1,P2,點(diǎn)Q1,Q2和點(diǎn)R1,R2,則類似的結(jié)論是                

 

查看答案和解析>>

同步練習(xí)冊答案