.(本小題滿分14分)
已知等比數(shù)列的前項(xiàng)和= 數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足=1(.)
(1)求數(shù)列的通項(xiàng)公式
(2)求數(shù)列的通項(xiàng)公式
(3)若數(shù)列{項(xiàng)和為,問>的最小正整數(shù)是多少?

126.
解:(1),
,
又?jǐn)?shù)列成等比數(shù)列, ,所以
又公比,所以  ;………….4分
(2)
∴數(shù)列是首項(xiàng)為1公差為1的等差數(shù)列.
 .∴          ………….6分
當(dāng) ;
();                   ………………………9分
(3)
 ;        ………………………12分
,故滿足的最小正整數(shù)為126.
………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列,滿足
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,
當(dāng)時(shí),求第行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列,若數(shù)列滿足
,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(n)=1+2+3+…+(n-1)+n+(n-1)+…+3+2+1,則f(2)=
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的前n項(xiàng)和,則   ▲  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列各項(xiàng)均為正數(shù)的等比數(shù)列,是等差數(shù)列,且,則有
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列{an}是等差數(shù)列,且
⑴求數(shù)列{an}的通項(xiàng)公式
⑵令,求數(shù)列{bn}的前10項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,……叫做三角數(shù),它有一定的規(guī)律性,第2010個(gè)三角數(shù)與第2008個(gè)三角數(shù)的差為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是各項(xiàng)互不相等的正數(shù)等差數(shù)列,是各項(xiàng)互不相等的正數(shù)等比數(shù)列,,,則(    )
A. >         B      C.<      D. =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列是等差數(shù)列,且,,則該數(shù)列的通項(xiàng)公式__ ▲ __.

查看答案和解析>>

同步練習(xí)冊(cè)答案