已知函數(shù)
(1)當(dāng),且時(shí),求證:
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.
(1)證明見(jiàn)解析;(2)不存在,理由見(jiàn)解析.
解析試題分析:(1)分時(shí)和時(shí),根據(jù)絕對(duì)值的性質(zhì),可根據(jù)絕對(duì)值的定義,可將函數(shù)的解析式化為分段函數(shù)的形式,進(jìn)而分析函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性證得結(jié)論
(2)根據(jù)(1)中結(jié)論,分①當(dāng)、時(shí),②當(dāng)、時(shí),③當(dāng)、時(shí),三種情況討論、的存在性,最后綜合討論結(jié)果,可得答案.
試題解析:(1),,
所以在(0,1)內(nèi)遞減,在(1,+)內(nèi)遞增.
由,且,即.
(2)不存在滿足條件的實(shí)數(shù).
①當(dāng)時(shí),在(0,1)內(nèi)遞減,
,所以不存在.
②當(dāng)時(shí),在(1,+)內(nèi)遞增,
是方程的根.
而方程無(wú)實(shí)根.所以不存在.
③當(dāng)時(shí),在(a,1)內(nèi)遞減,在(1,b)內(nèi)遞增,所以,
由題意知,所以不存在.
考點(diǎn):1.帶絕對(duì)值的函數(shù);2.分段函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義,,.
(1)比較與的大。
(2)若,證明:;
(3)設(shè)的圖象為曲線,曲線在處的切線斜率為,若,且存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若非零函數(shù)對(duì)任意實(shí)數(shù)均有,且當(dāng)時(shí)
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當(dāng)時(shí), 對(duì)時(shí)恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某廠生產(chǎn)某種產(chǎn)品的年固定成本為萬(wàn)元,每生產(chǎn)千件,需另投入成本為.當(dāng)年產(chǎn)量不足千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于千件時(shí),(萬(wàn)元).每件商品售價(jià)為萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
(1)設(shè)函數(shù),若方程在上有且僅一個(gè)實(shí)根,求實(shí)數(shù) 的取值范圍;
(2)當(dāng)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
用一塊鋼錠燒鑄一個(gè)厚度均勻,且表面積為2m2的正四棱錐形有蓋容器(如下圖)。設(shè)容器高為m,蓋子邊長(zhǎng)為m,
(1)求關(guān)于的解析式;
(2)設(shè)容器的容積為V m3,則當(dāng)h為何值時(shí),V最大? 并求出V的最大值(求解本題時(shí),不計(jì)容器厚度).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù)若存在,使得成立,則稱(chēng)為的不動(dòng)點(diǎn).
已知
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且、兩點(diǎn)關(guān)于直線對(duì)稱(chēng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知某公司生產(chǎn)品牌服裝的年固定成本為10萬(wàn)元,每生產(chǎn)千件,須另投入2.7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)品牌服裝千件并全部銷(xiāo)售完,每千件的銷(xiāo)售收入為萬(wàn)元,且.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com