分析 直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t為參數(shù))與曲線C:y2-x2=1聯(lián)立,即7t2+70t-25=0,利用參數(shù)的幾何意義,即可求解.
解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t為參數(shù))與曲線C:y2-x2=1聯(lián)立,即7t2+70t-25=0…2
(1)$|AB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\frac{{20\sqrt{14}}}{7}$…6
(2)${t_M}=\frac{{{t_1}+{t_2}}}{2}=-5$,${x_M}=-1+\frac{3}{5}×(-5)=-4$,${y_M}=1+\frac{4}{5}×(-5)=-3$,
故M(-4,-3)…10
點評 本題考查參數(shù)方程的運用,考查參數(shù)的幾何意義,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | $\frac{16}{3}$ | C. | 32 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{32\sqrt{35}π}}{27}$ | C. | $\frac{{128\sqrt{2}π}}{81}$ | D. | $\frac{{8\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com