(13分)設函數(shù)
(Ⅰ)求的單調區(qū)間;(Ⅱ)求的值域.
(1)單調增;單調減;(2).
第一問利用導數(shù)來判定函數(shù) 單調區(qū)間。

第二問,利用第一問的結論,直接得到函數(shù)的最大值和最小值,從而得到函數(shù)的值域。
(Ⅰ)解:因為

的單調區(qū)間:單調增;單調減
(Ⅱ)利用第一問的結論知道函數(shù)在x=2處取得極大值,即為最大值,在x=1,或x=e處取得最小值,得到的值域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)討論在其定義域上的單調性;
(II)當時,若關于x的方程恰有兩個不等實根,求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義域為R的函數(shù)對任意x都有,且其導函數(shù),則當,有 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)設函數(shù)
(Ⅰ)若
⑴求的值;
⑵在存在,使得不等式成立,求c最小值。(參考數(shù)據(jù)
(Ⅱ)當上是單調函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=,為常數(shù)。
(I)當=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)若上存在單調遞增區(qū)間,求的取值范圍;
(2)當a=1時,求上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)上無極值點,則實數(shù)的取值范圍是(  )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的單調遞增區(qū)間是             

查看答案和解析>>

同步練習冊答案