【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,且,,

1)求數(shù)列的通項(xiàng)公式;

2)若對(duì),都有,求實(shí)數(shù)a的取值范圍;

3)當(dāng)時(shí),將數(shù)列中的部分項(xiàng)按原來(lái)的順序構(gòu)成數(shù)列證明:存在無(wú)數(shù)個(gè)滿(mǎn)足條件的無(wú)窮等比數(shù)列.

【答案】1;

2的取值范圍為

3)證明見(jiàn)解析

【解析】

1)直接利用遞推關(guān)系式求出數(shù)列的通項(xiàng)公式;

2)利用(1)的結(jié)論,進(jìn)一步求出數(shù)列的前項(xiàng)和,從而可求出的取值范圍;

3)利用定義進(jìn)行證明,再利用分類(lèi)討論思想求出結(jié)果.

解:(1)當(dāng)時(shí),,解得,

當(dāng)時(shí),由得,,

所以,

,

因?yàn)?/span>,

所以,

所以,,

所以;

2)當(dāng)為奇數(shù)時(shí),,

,得恒成立,

,則,

所以,

當(dāng)為偶數(shù)時(shí),,

,得恒成立,

所以,

因?yàn)?/span>,

所以的取值范圍為.

3)證明:當(dāng)時(shí),若為奇數(shù),則,

令等比數(shù)列的公比,則,

設(shè),

因?yàn)?/span>,

所以

,

因?yàn)?/span>為正整數(shù),

所以數(shù)列是數(shù)列中包含的無(wú)窮等比數(shù)列,

因?yàn)楣?/span>有無(wú)數(shù)個(gè)不同的取值,對(duì)應(yīng)著不同的等比數(shù)列,

因此無(wú)窮等比數(shù)列有無(wú)數(shù)個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(2-x),當(dāng)x∈[-2,0]時(shí),f(x)=,則在區(qū)間(-2,6)上關(guān)于x的方程f(x)-log8(x+2)=0的解的個(gè)數(shù)為( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;

(2)已知某人一天的走路步數(shù)超過(guò)8000步時(shí)被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計(jì)完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)\.

1)若處的切線(xiàn)垂直于y軸,求a的值;

2)若對(duì)于任意,都有恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為等差數(shù)列的前項(xiàng)和,且,

1)求數(shù)列的通項(xiàng)公式;

2)若滿(mǎn)足不等式的正整數(shù)恰有個(gè),求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形中,,,,,,上一點(diǎn),且,過(guò),現(xiàn)將沿折到,使,如圖2.

1)求證:平面

2)在線(xiàn)段上是否存在一點(diǎn),使與平面所成的角為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀(guān)測(cè)數(shù)據(jù)列于下表中,并作出了如圖的散點(diǎn)圖.

溫度/

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/個(gè)

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該昆蟲(chóng)的產(chǎn)卵數(shù)與溫度的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由).

2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)

3)根據(jù)關(guān)于的回歸方程,估計(jì)溫度為33℃時(shí)的產(chǎn)卵數(shù).

(參考數(shù)據(jù):

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)若函數(shù)的圖象均在軸上方,求的取值范圍;

2)記為函數(shù)上的零點(diǎn),若存在唯一的,使得,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓與拋物線(xiàn)的一個(gè)公共點(diǎn),且橢圓與拋物線(xiàn)具有一個(gè)相同的焦點(diǎn)

(1)求橢圓及拋物線(xiàn)的方程;

(2)設(shè)過(guò)且互相垂直的兩動(dòng)直線(xiàn),與橢圓交于兩點(diǎn),與拋物線(xiàn)交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案