假設(shè)f(x)=x2-4x+3,若實數(shù)x、y滿足條件f(y)≤f(x)≤0,則點(x,y)所構(gòu)成的區(qū)域的面積等于(  )
A、1B、2C、3D、4
考點:二元一次不等式(組)與平面區(qū)域
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:將不等式轉(zhuǎn)化為不等式組,作出不等式組對應(yīng)的平面區(qū)域,即可得到結(jié)論.
解答: 解:由f(y)≤f(x)≤0可得
x2-4x+3≤0
y2-4y+3≤x2-4x+3
,
1≤x≤3
(x-y)(x+y-4)≥0

畫出其表示的平面區(qū)域如圖所示,
可得面積S=2×
1
2
×2×1=2,
故選:B.
點評:本題主要考查二元一次不等式表示平面區(qū)域,利用數(shù)形結(jié)合是解決本題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-4y≤-3
3x+5y≤25
x≥1
,那么z=3x+y+5的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標原點,點A(-2,1),若點M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個動點,則
OA
OM
的取值范圍是( 。
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題是真命題的有( 。
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列古典概型的說法中正確的個數(shù)是(  )
①試驗中所有可能出現(xiàn)的基本事件只有有限個;
②每個事件出現(xiàn)的可能性相等;
③基本事件的總數(shù)為n,隨機事件A包含k個基本事件,則P(A)=
k
n
;
④每個基本事件出現(xiàn)的可能性相等.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(m+2)x+(m+1)y+1=0上存在點(x,y)滿足
x+y-3≤0
x-2y-3≤0
x≥1
,則m的取值范圍為(  )
A、[-
5
3
,+∞)
B、(-∞,-
5
3
]
C、[-1,
1
2
]
D、[-
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

稱滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比數(shù)列{an}為2k(k∈N*)階“期待數(shù)列”,求公比q及{an}的通項公式;
(2)若一個等差數(shù)列{an}既是2k(k∈N*)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”{an}的前k項和為Sk(k=1,2,3,…,n):
(i)求證:|Sk|
1
2

(ii)若存在m∈{1,2,3,…,n}使Sm=
1
2
,試問數(shù)列{Sk}能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=lnx-ex+a
(I)若x=1是,f(x)的極值點,討論f(x)的單調(diào)性
(Ⅱ)當a≥-2時,證明:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
①將一枚硬幣拋擲兩次,設(shè)事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與B是對立事件;
②在命題①中,事件A與B是互斥事件;
③在10件產(chǎn)品中有3件是次品,從中任取3件.事件A:“所取3件中最多有2件次品”,事件B:“所取3件中至少有2件次品”,則事件A與B是互斥事件;
④若事件A、B滿足P(A)+P(B)=1,則A、B是對立事件.
則以上命題中假命題是
 
(寫出所有假命題的序號)

查看答案和解析>>

同步練習(xí)冊答案