【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:∵a1=1,an+1 ,

= =3( + ),

則{ + }為等比數(shù)列,公比q=3,

首項(xiàng)為

+ = ,

=﹣ + = ,即an=


(2)解:bn=(3n﹣1) an= ,

則數(shù)列{bn}的前n項(xiàng)和Tn=

= ++ ②,

兩式相減得 =1 = =2﹣ =2﹣ ,

則 Tn=4﹣


【解析】(1)根據(jù)數(shù)列的遞推關(guān)系,結(jié)合等比數(shù)列的定義即可證明{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;(2)利用錯(cuò)位相減法即可求出數(shù)列的和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ <1“是“a>1“的必要不充分條件
C.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
D.“若am2<bm2 , 則a<b”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動(dòng)點(diǎn)P是在以O(shè)點(diǎn)為圓心,OB為半徑的扇形內(nèi)運(yùn)動(dòng)(含邊界)且∠BOC=90°;設(shè) ,則x+y的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐PABCD的底面ABCD是正方形,EF分別為ACPB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.

(1)EF與平面ABCD所成角的大小;

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時(shí),不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)的零點(diǎn)的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°BC=6,AC=3,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2

1)求證:平面;

2)過(guò)點(diǎn)E作截面 平面,分別交CBF,H,求截面的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O1的方程為x2(y1)24O2的圓心為O2(2,1)

(1)若圓O1與圓O2外切,求圓O2的方程;

(2)若圓O1與圓O2交于AB兩點(diǎn),|AB|2求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且,求

(1)的值;

(2)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案