設(shè)函數(shù)f(x)=sin(
3
x+φ)(0<φ<π)
,若f(x)+f′(x)是偶函數(shù),則φ=
π
6
π
6
分析:先求導(dǎo)得到f(x),再把f(x)+f′(x)化為Asin(ωx+Φ),進(jìn)而利用f(x)+f′(x)是偶函數(shù)即可求出φ的值.
解答:解:∵f(x)=
3
cos(
3
x+
φ),
∴f(x)+f(x)=sin(
3
x
+φ)+
3
cos(
3
x+φ)=2sin(
3
x+φ+
π
3
).
∵f(x)+f(x)是偶函數(shù),∴在x=0時(shí)取得最值,必有sin(φ+
π
3
)=±1.
又∵0<φ<π,∴
π
3
φ+
π
3
3
,∴φ+
π
3
=
π
2
,解得φ=
π
6

故答案為
π
6
點(diǎn)評(píng):熟練掌握導(dǎo)數(shù)的運(yùn)算性質(zhì)、三角函數(shù)的奇偶性與單調(diào)性及兩角和的正弦公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•安徽模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,給出以下四個(gè)論斷:
①它的圖象關(guān)于直線x=
π
12
對(duì)稱(chēng);     
②它的圖象關(guān)于點(diǎn)(
π
3
,0)
對(duì)稱(chēng);
③它的周期是π;                   
④在區(qū)間[0,
π
6
)
上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的命題:
條件
①③
①③
結(jié)論
;(用序號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)若f(x)•f(-x)=
1
4
,x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
)
,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期為
3

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若將y=f(x)的圖象向左平移
π
2
個(gè)單位可得y=g(x)的圖象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案