【題目】對(duì)函數(shù)(其中為實(shí)數(shù),),給出下列命題;

①當(dāng)時(shí),在定義域上為單調(diào)遞減函數(shù);②對(duì)任意,都不是奇函數(shù);③當(dāng)時(shí),為偶函數(shù);④關(guān)于的方程最多有一個(gè)實(shí)數(shù)根,其中正確命題的序號(hào)為________,(把所有正確的命題序號(hào)寫入橫線)

【答案】②④

【解析】

根據(jù)奇偶性,單調(diào)性的定義,以及函數(shù)零點(diǎn)的求解,結(jié)合題目,對(duì)選項(xiàng)進(jìn)行逐一判斷即可.

當(dāng)時(shí),,該函數(shù)是由反比例函數(shù)向右平移1個(gè)單位,

向上平移1個(gè)單位得到,故該函數(shù)在是單調(diào)減函數(shù),

但在整個(gè)定義域上不是單調(diào)減函數(shù),故①錯(cuò)誤;

同時(shí)該函數(shù)的對(duì)稱中心為,不關(guān)于軸對(duì)稱,故不是偶函數(shù),則③錯(cuò)誤;

對(duì)②:若是奇函數(shù),則對(duì)定義域內(nèi)任意都成立,

,整理得恒成立,顯然沒有這樣的滿足題意,

故對(duì)任意都不是奇函數(shù),則②正確;

對(duì)④:等價(jià)于,若,該方程無根;

,該方程最多一個(gè)根,故的方程最多有一個(gè)實(shí)數(shù)根

則④正確.

綜上所述,正確的有:②④.

故答案為:②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)處取得極值,求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐SABCD中,四邊形ABCD為平行四邊形,BAAC,SAAD,SCCD

Ⅰ)求證:ACSB

Ⅱ)若ABACSA=3,E為線段BC的中點(diǎn),F為線段SB上靠近B的三等分點(diǎn),求直線SC與平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中直線與拋物線C交于A,B兩點(diǎn),且

C的方程;

D為直線外一點(diǎn),且的外心MC上,求M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C1(a>b>0)的離心率為,橢圓上動(dòng)點(diǎn)P到一個(gè)焦點(diǎn)的距離的最小值為3(1)

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 已知過點(diǎn)M(0,-1)的動(dòng)直線l與橢圓C交于A,B兩點(diǎn),試判斷以線段AB為直徑的圓是否恒過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面;

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,中線長AM2.

1)若=-2,求證:0

2)若P為中線AM上的一個(gè)動(dòng)點(diǎn),求·()的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案