坐標平面上有兩個定點A,B和動點P,如果直線PA,PB的斜率之積為定值m,則點P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號填在橫線上:         .

 

①②④⑤

【解析】以直線ABx,線段AB的中垂線為y軸建立平面直角坐標系,設(shè)A(-a,0),B(a,0),P(x,y),則有·=m,mx2-y2=a2m,

m<0m-1,軌跡為橢圓;m>0,軌跡為雙曲線;m=-1,軌跡為圓;m=0,軌跡為一直線;但軌跡不可能是拋物線.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:填空題

已知橢圓+=1(a>b>0)的右頂點為A(1,0),過其焦點且垂直長軸的弦長為1,則橢圓方程為       .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,·=0.

(1)求橢圓C的方程.

(2)求證:直線l過定點,并求出該定點N的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

從原點向圓x2+y2-12y+27=0作兩條切線,則該圓夾在兩條切線間的劣弧長為(  )

(A)π (B)2π (C)4π (D)6π

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

C1:x2+y2+2x-3=0和圓C2:x2+y2-4y+3=0的位置關(guān)系為(  )

(A)相離  (B)相交  (C)外切  (D)內(nèi)含

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十七第八章第八節(jié)練習卷(解析版) 題型:選擇題

已知動點P(x,y),lgy,lg|x|,lg成等差數(shù)列,則點P的軌跡圖象是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:填空題

已知0<k<4,直線l1:kx-2y-2k+8=0和直線l2:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:解答題

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.

(1)f(x)的最小正周期及解析式.

(2)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間[0,]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十八第四章第四節(jié)練習卷(解析版) 題型:解答題

已知A,B,C三點的坐標分別為A(3,0),B(0,3),C(cosα,sinα),其中α∈(,).

(1)||=||,求角α的值.

(2)·=-1,tan(α+)的值.

 

查看答案和解析>>

同步練習冊答案