【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.
(1)求點(diǎn)的坐標(biāo);
(2)求函數(shù)的單調(diào)增區(qū)間及對(duì)稱軸方程;
(3)若把方程的正實(shí)根從小到大依次排列為,求的值.
【答案】(1) (2) 單調(diào)遞增區(qū)間為;對(duì)稱軸方程為,;(3)14800
【解析】
(1)先求出,令求出點(diǎn)B的坐標(biāo);(2)利用復(fù)合函數(shù)的單調(diào)性原理求函數(shù)的單調(diào)增區(qū)間,利用三角函數(shù)的圖像和性質(zhì)求對(duì)稱軸方程;(3)由(2)知對(duì)稱軸方程為,,所以,,…,,即得解.
解:(1)
由已知,得
∴
令,得,,∴,.
當(dāng)時(shí),,∴得坐標(biāo)為
(2)單調(diào)遞增區(qū)間,得,
∴單調(diào)遞增區(qū)間為
對(duì)稱軸,得,
∴對(duì)稱軸方程為,
(3)由,得,
根據(jù)正弦函數(shù)圖象的對(duì)稱性,且由(2)知對(duì)稱軸方程為,
∴,,…,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷售,得到如下數(shù)據(jù):
單價(jià)(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求銷量(件)關(guān)于單價(jià)(元)的線性回歸方程;
(2)若單價(jià)定為10元,估計(jì)銷量為多少件;
(3)根據(jù)銷量關(guān)于單價(jià)的線性回歸方程,要使利潤(rùn)最大,應(yīng)將價(jià)格定為多少?
參考公式:,.參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中點(diǎn),
求證:(1)平面ABC;
(2)平面EDB.
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王每天自己開車上班,他在路上所用的時(shí)間(分鐘)與道路的擁堵情況有關(guān).小王在一年中隨機(jī)記錄了200次上班在路上所用的時(shí)間,其頻數(shù)統(tǒng)計(jì)如下表,用頻率近似代替概率.
(分鐘) | 15 | 20 | 25 | 30 |
頻數(shù)(次) | 50 | 50 | 60 | 40 |
(Ⅰ)求小王上班在路上所用時(shí)間的數(shù)學(xué)期望;
(Ⅱ)若小王一周上班5天,每天的道路擁堵情況彼此獨(dú)立,設(shè)一周內(nèi)上班在路上所用時(shí)間不超過(guò)的天數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某工廠生產(chǎn)線上隨機(jī)抽取16件零件,測(cè)量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下(單位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,據(jù)此可估計(jì)該生產(chǎn)線上大約有25%的零件內(nèi)徑小于等于_____,大約有30%的零件內(nèi)徑大于_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)對(duì)于,為任意實(shí)數(shù),關(guān)于的方程恰好有兩個(gè)不等實(shí)根,求實(shí)數(shù)的值;
(3)在(2)的條件下,若不等式在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b在區(qū)間 上取值,則函數(shù) 在R上有兩個(gè)相異極值點(diǎn)的概率是( )
A.
B.1-
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(x0 , 0),B(0,y0)兩點(diǎn)分別在x軸和y軸上運(yùn)動(dòng),且|AB|=1,若動(dòng)點(diǎn)P(x,y)滿足 .
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點(diǎn),E(1,0),試問(wèn):當(dāng)t變化時(shí),是否存在一直線l2 , 使△ABE的面積為 ?若存在,求出直線l2的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com