【題目】已知點(diǎn)Pn(an,bn)滿(mǎn)足an+1=an·bn+1,bn+1(n∈N*),且點(diǎn)P1的坐標(biāo)為(1,-1).

(1)求過(guò)點(diǎn)P1,P2的直線(xiàn)l的方程;

(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N*,點(diǎn)Pn都在(1)中的直線(xiàn)l

【答案】(1)2x+y=1(2)證明見(jiàn)解析

【解析】

(1)求出P2的坐標(biāo),列出直線(xiàn)的兩點(diǎn)式方程,化簡(jiǎn)即可;

(2)由(1)知,n=1時(shí)2a1+b1=1成立,假設(shè)n=k時(shí),2ak+bk=1成立,進(jìn)而證得當(dāng)n=k+1時(shí),2ak+1+bk+1=1也成立,故nN*Pn都在直線(xiàn)l上.

(1)由題意得a1=1,b1=-1,故b2,a2=1×,∴P2.

∴直線(xiàn)l的方程為,即2x+y=1.

(2)證明:①當(dāng)n=1時(shí),由(1)知,2a1+b1=2×1+(-1)=1成立,

②假設(shè)n=k(k≥1且k∈N*)時(shí),2ak+bk=1成立.

當(dāng)n=k+1時(shí),則

∴當(dāng)n=k+1時(shí),2ak+1+bk+1=1也成立.

由①②知,對(duì)于n∈N*,都有2an+bn=1,

即點(diǎn)Pn在直線(xiàn)l上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2當(dāng) 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

(1)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在線(xiàn)段上,且滿(mǎn)足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線(xiàn)上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E)的離心率是,分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),的面積為2.直線(xiàn)l過(guò)點(diǎn)且與橢圓E交于PQ兩點(diǎn)(P,Q異于,

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)求的面積最大值;

3)設(shè)直線(xiàn)與直線(xiàn)的斜率分別為,,求證:為常數(shù),并求出這個(gè)常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)證明:△ABC是正三角形;

2)如圖,點(diǎn)D在邊BC的延長(zhǎng)線(xiàn)上,且BC2CD,AD,求sinBAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三課外興趣小組為了了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問(wèn)卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

3)在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來(lái)自高三(5)班,從中推選5人接受校園電視臺(tái)采訪(fǎng),請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

附:

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線(xiàn)上的點(diǎn),且

證明:直線(xiàn)與圓相切;

面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線(xiàn)的左焦點(diǎn)作圓的切線(xiàn)交雙曲線(xiàn)的右支于點(diǎn),且切點(diǎn)為,已知為坐標(biāo)原點(diǎn),為線(xiàn)段的中點(diǎn)(點(diǎn)在切點(diǎn)的右側(cè)),若的周長(zhǎng)為,則雙曲線(xiàn)的漸近線(xiàn)的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是拋物線(xiàn)Cy24x上兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸有唯一的交點(diǎn)Px0,0).

(1)求證:x02

(2)若直線(xiàn)AB過(guò)拋物線(xiàn)C的焦點(diǎn)F,且|AB|10,求|PF|

查看答案和解析>>

同步練習(xí)冊(cè)答案