【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上是減函數(shù),且f(﹣2)=0,則使得f(x)<0的x的取值范圍 .
【答案】(﹣2,2)
【解析】解:根據(jù)f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上是減函數(shù);
∴f(x)在(0,+∞)上是增函數(shù),且f(﹣2)=f(2)=0;
∴若x>0,f(x)<0=f(2);
∴0<x<2;
若x≤0,f(x)<0=f(﹣2);
∴﹣2<x≤0;
∴x的取值范圍是:(﹣2,2).
所以答案是:(﹣2,2).
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知R上的奇函數(shù)f(x),對任意x∈R,f(x+1)=﹣f(x),且當(dāng)x∈(﹣1,1)時(shí),f(x)=x,則f(3)+f(﹣7.5)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中假命題是( )
A.x0∈R,ln x0<0
B.x∈(-∞,0),ex>x+1
C.x>0,5x>3x
D.x0∈(0,+∞),x0<sin x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,則“a>2”是“a2>2a”成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),若對于任意給定的不等實(shí)數(shù)x1 , x2 , 不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,則不等式f(1﹣x)<0的解集為( )
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,1)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于常數(shù)m、n,“mn>0”是“方程mx2+ny2=1的曲線是橢圓”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次拋硬幣實(shí)驗(yàn)中,甲、乙兩人各拋一枚硬幣一次,設(shè)命題p是“甲拋的硬幣正面向上”,q是“乙拋的硬幣正面向上”,則命題“至少有一人拋的硬幣是正面向下”可表示為( )
A.(¬p)∨(¬q)
B.p∧(¬q)
C.(¬p)∧(¬q)
D.p∨q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的圖象向右平移1個(gè)單位長度,所得圖象與曲線y=ex關(guān)于y軸對稱,則f(x)=( )
A.ex+1
B.ex-1
C.e-x+1
D.e-x-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.由五個(gè)平面圍成的多面體只能是四棱錐
B.棱錐的高線可能在幾何體之外
C.僅有一組對面平行的六面體是棱臺
D.有一個(gè)面是多邊形,其余各面是三角形的幾何體是棱錐
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com