【題目】設命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.
【答案】
(1)解:當a=1時,p:{x|1<x<3},q:{x|2<x≤3},又p∧q為真,所以p真且q真,
由 得2<x<3,所以實數(shù)x的取值范圍為(2,3)
(2)解:因為¬p是¬q的充分不必要條件,所以q是p的充分不必要條件,
又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以 解得1<a≤2,
所以實數(shù)a的取值范圍是(1,2]
【解析】(1)現(xiàn)將a=1代入命題p,然后解出p和q,又p∧q為真,所以p真且q真,求解實數(shù)a的取值范圍;(2)先由¬p是¬q的充分不必要條件得到q是p的充分不必要條件,然后化簡命題,求解實數(shù)a的范圍.
【考點精析】利用復合命題的真假對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學 來源: 題型:
【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數(shù)學學科提供5種不同層次的課程,分別稱為數(shù)學1、數(shù)學2、數(shù)學3、數(shù)學4、數(shù)學5,每個學生只能從5種數(shù)學課程中選擇一種學習,該校高二年級1800名學生的數(shù)學選課人數(shù)統(tǒng)計如表:
課程 | 數(shù)學1 | 數(shù)學2 | 數(shù)學3 | 數(shù)學4 | 數(shù)學5 | 合計 |
選課人數(shù) | 180 | 540 | 540 | 360 | 180 | 1800 |
為了了解數(shù)學成績與學生選課情況之間的關系,用分層抽樣的方法從這1800名學生中抽取10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數(shù)學2的人數(shù)為,選擇數(shù)學1的人數(shù)為,設隨機變量,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C 的對邊分別是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大。
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高一(1)班參加校生物競賽學生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在[80,100]之間的學生中任選兩人進行某項研究,求至少有一人分數(shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐A﹣BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A﹣MBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個推導過程:
①∵a,b∈R+,∴( )+( )≥2 =2;
②∵x,y∈R+,∴l(xiāng)gx+lgy≥2 ;
③∵a∈R,a≠0,∴( )+a≥2 =4;
④∵x,y∈R,xy<0,∴( )+( )=﹣[(﹣( ))+(﹣( ))]≤﹣2 =﹣2.
其中正確的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:方程 + =1表示焦點在y軸上的橢圓,命題q:雙曲線 ﹣ =1的離心率e∈( , ),若命題p、q中有且只有一個為真命題,則實數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,D1C的中點,AD=AA1 , AB=2AD. (Ⅰ)證明:MN∥平面ADD1A1;
(Ⅱ)求直線AD與平面DMN所成角θ的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com