在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(1)求證:C1B⊥平面ABC;
(2)設(shè)E是CC1的中點(diǎn),求AE和平面ABC1所成角正弦值的大。
(1)證明:在△BCC1中,
∵BC=1,CC1=2,∠BCC1=
π
3
,
∴BC1=
1+4-2•1•2•
1
2
=
3
,
∴∠CBC1=90°,∴BC⊥BC1,
∵AB⊥側(cè)面BB1C1C,BC1?面BB1C1C,
∴BC1⊥AB,
∵AB∩BC=B,∴BC1⊥平面ABC;
(2)∵AB⊥側(cè)面BB1C1C,AB?面ABC1,
∴側(cè)面BB1C1C⊥面ABC1
過E作BC1的垂線,垂足為F,則EF⊥面ABC1,
連接AF,則∠EAF為所求.
∵BC1⊥BC,BC1⊥EF,
∴BCEF,
∵E是CC1的中點(diǎn),
∴F是BC1的中點(diǎn),EF=
1
2
,
∵AE=
5
,
∴sin∠EAF=
1
2
5
=
5
10
,即AE和平面ABC1所成角正弦值為
5
10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)OA是球O的半徑,M是OA的中點(diǎn),過M且與OA成450角的平面截球O的表面得到圓C,若圓C的面積等于
8
,則球O的半徑等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,∠ACB=90°,PA⊥底面ABC.
(I)求證:平面PAC⊥平面PBC;
(II)若AC=BC=PA,M是PB的中點(diǎn),求AM與平面PBC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1直線AD1與平面A1C1的夾角為( 。
A.30°B.45°C.90°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,E為DD1上的點(diǎn)、F為DB的中點(diǎn).
(Ⅰ)求直線B1F與平面CDD1C1所成角的正弦值;
(Ⅱ)若直線EF平面ABC1D1,試確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=
3

(1)求證:BC⊥SC;
(2)設(shè)M為棱SA中點(diǎn),求異面直線DM與SB所成角的大小
(3)求面ASD與面BSC所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為
3
3
,M是AC的中點(diǎn),則EM,DE所成角的余弦值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4,將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求二面角E-AB-D的大。
(2)求四面體ABDE的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐P-ABC的兩側(cè)面PAB,PBC都是邊長為2的正三角形,AC=
3
,則二面角A-PB-C的大小為______.

查看答案和解析>>

同步練習(xí)冊答案