【題目】已知實(shí)數(shù)xy滿足條件,則點(diǎn)的運(yùn)動軌跡是( )

A.橢圓B.雙曲線C.拋物線D.

【答案】A

【解析】

先證明:當(dāng)點(diǎn)與一個定點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)時,這個點(diǎn)的軌跡是橢圓,然后轉(zhuǎn)化已知條件為動點(diǎn)與定點(diǎn)和定直線的距離問題,然后判斷即可.

先證明:當(dāng)點(diǎn)與一個定點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)時,這個點(diǎn)的軌跡是橢圓.

設(shè)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù)

設(shè)是點(diǎn)到直線的距離,

根據(jù)題意,所求軌跡就是集合,由此得

將上式兩邊平方,并化簡得

設(shè),就可化成,這是橢圓的標(biāo)準(zhǔn)方程.

故當(dāng)點(diǎn)與一個定點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)時,這個點(diǎn)的軌跡是橢圓.

由已知實(shí)數(shù)滿足條件

,

表達(dá)式的含義是點(diǎn)到定點(diǎn)與到直線的距離的比為,由上述證明的結(jié)論可得,軌跡是橢圓.
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為直角梯形,,為等邊三角形,平面平面,的中點(diǎn).

(1)證明:;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)若為真命題,為假命題,求實(shí)數(shù)的取值范圍;

2)若“”是“”的充分不必要條件,求實(shí)數(shù)的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若存在單調(diào)增區(qū)間,求的取值范圍;

(Ⅱ)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不相等的實(shí)數(shù)根?若存在,求出的取值范圍?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三個乒乓球協(xié)會分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為,乙協(xié)會編號為,丙協(xié)會編號分別為,若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.

(1)用所給編號列出所有可能抽取的結(jié)果;

(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3

(1)求橢圓的方程;

(2)若過橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160 cm184 cm之間,將測量結(jié)果按如下方式分成6組:第1[160,164),第2[164,168),第6[180,184],如圖是按上述分組方法得到的頻率分布直方圖.

(1)由頻率分布直方圖估計該校高三年級男生平均身高狀況;

(2)求這50名男生身高在172 cm以上(172 cm)的人數(shù);

(3)在這50名男生身高在172 cm以上(172 cm)的人中任意抽取2人,將該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

參考數(shù)據(jù):若ξN(μ,σ2),則P(μσ<ξ≤μσ)0.6826,P(μ2σ<ξ≤μ2σ)0.9544P(μ3σ<ξ≤μ3σ)0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對手機(jī)流量的需求越來越大.某通信公司為了更好地滿足消費(fèi)者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個城市采用不同的定價方案作為試點(diǎn),經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價: (單位:元/月)和購買總?cè)藬?shù)(單位:萬人)的關(guān)系如表:

定價x(元/月)

20

30

50

60

年輕人(40歲以下)

10

15

7

8

中老年人(40歲以及40歲以上)

20

15

3

2

購買總?cè)藬?shù)y(萬人)

30

30

10

10

(Ⅰ)根據(jù)表中的數(shù)據(jù),請用線性回歸模型擬合的關(guān)系,求出關(guān)于的回歸方程;并估計元/月的流量包將有多少人購買?

(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價流量包,元以上(包括元)的流量包稱為高價流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識,填寫下面列聯(lián),并通過計算說明是否能在犯錯誤的概率不超過的前提下,認(rèn)為購買人的年齡大小與流量包價格高低有關(guān)?

定價x(元/月)

小于50元

大于或等于50元

總計

年輕人(40歲以下)

中老年人(40歲以及40歲以上)

總計

參考公式:其中

其中

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案