【題目】已知數(shù)集具有性質(zhì)對(duì)任意的,使得成立.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說(shuō)明理由;
(2)求證: ;
(2)若,求的最小值.
【答案】(1)不具有(2)見(jiàn)解析(3).
【解析】【試題分析】(1)直接運(yùn)用題設(shè)提供的條件進(jìn)行驗(yàn)證即可;(2)運(yùn)用題設(shè)條件中定義的信息可得,同理可得,將上述不等式相加得: ,可獲證;(3)借助(2)的結(jié)論可知,又,所以可得,因此構(gòu)成數(shù)集,經(jīng)檢驗(yàn)具有性質(zhì),故的最小值為.
解:(1)因?yàn)?/span>,所以具有性質(zhì);因?yàn)椴淮嬖?/span>,使得,所以不具有性質(zhì).
(2)因?yàn)榧?/span>具有性質(zhì),所以對(duì)而言,存在,使得,又因?yàn)?/span>,所以,所以,同理可得,將上述不等式相加得: ,所以.
(3)由(2)可知,又,所以,
所以,構(gòu)成數(shù)集,經(jīng)檢驗(yàn)具有性質(zhì),故的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)求函數(shù)的最大值;
(2)對(duì)于任意,且,是否存在實(shí)數(shù),使恒
成立,若存在求出的范圍,若不存在,說(shuō)明理由;
(3)若正項(xiàng)數(shù)列滿足,且數(shù)列的前項(xiàng)和為,試判斷與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為:,直線的方程為.
(1)求證:直線恒過(guò)定點(diǎn);
(2)當(dāng)直線被圓截得的弦長(zhǎng)最短時(shí),求直線的方程;
(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (>b>0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計(jì) | 100 | 1.00 |
(1)求的值并估計(jì)這100名考生成績(jī)的平均分;
(2)按頻率分布表中的成績(jī)分組,采用分層抽樣抽取20人參加學(xué)校的“我愛(ài)國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①“若為的極值點(diǎn),則”的逆命題為真命題;
②“平面向量的夾角是鈍角”的充分不必要條件是
③若命題,則
④函數(shù)在點(diǎn)處的切線方程為.
其中不正確的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對(duì)稱點(diǎn)仍在圓上,且直線x-y+1=0被圓截得的弦長(zhǎng)為2,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng).抽獎(jiǎng)方法是:從裝有個(gè)紅球,和個(gè)白球的甲箱與裝有個(gè)紅球,和個(gè)白球,的乙箱中,各隨機(jī)摸出個(gè)球,若模出的個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(1)用球的標(biāo)號(hào)列出所有可能的模出結(jié)果;
(2)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,,分別為棱的中點(diǎn).
(1)求證:∥平面
(2)若異面直線與 所成角為,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com