【題目】設(shè)函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當, 時,方程有唯一實數(shù)解,求正數(shù)的值.
【答案】(1) (2) (3)
【解析】試題分析:(1)依題意確定的定義域,對求導(dǎo),求出函數(shù)的單調(diào)性,即可求出函數(shù)的最大值;(2)表示出,根據(jù)其圖象上存在一點,使此處切線的斜率可得,在上有解,即可求出實數(shù)的取值范圍;(3)由,方程有唯一實數(shù)解,構(gòu)造函數(shù),求出的單調(diào)性,即可求出正數(shù)的值.
試題解析:(1)依題意, 的定義域為,當時, ,
由,得,解得
由,得,解得或
∵,∴在單調(diào)遞増,在單調(diào)遞減;所以的極大值為,此即為最大值
(2),則有,在上有解,
∴, ,∵,所以當時,
取得最小值,∴
(3)由得,令,
令, ,∴在上單調(diào)遞增,而,
∴在,即,在,即,
∴在單調(diào)遞減,在單調(diào)遞増,∴極小值,令,即時方程有唯一實數(shù)解.
科目:高中數(shù)學 來源: 題型:
【題目】某P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進行了一次理財習慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某海輪以每小時30海里的速度航行,在點測得海面上油井在南偏東,海輪向北航行40分鐘后到達點,測得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達點,則兩點的距離為(單位:海里)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,經(jīng)研究發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù)y=log3(),單位是m/s,θ是表示魚的耗氧量的單位數(shù).
(1)當一條鮭魚的耗氧量是900個單位時,它的游速是多少?
(2)計算一條魚靜止時耗氧量的單位數(shù)。
(3)某條鮭魚想把游速提高1 m/s,那么它的耗氧量的單位數(shù)是原來的多少倍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)對任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.
(1)求證:f(x)在R上是增函數(shù);
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位建造一間地面面積為12的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度不得超過米,房屋正面的造價為400元/,房屋側(cè)面的造價為150元/,屋頂和地面的造價費用合計為5800元,如果墻高為3,且不計房屋背面的費用.
(1)把房屋總價表示成的函數(shù),并寫出該函數(shù)的定義域;
(2)當側(cè)面的長度為多少時,總造價最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實數(shù)的取值范圍;
(2)若關(guān)于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com