分析 (1)直接由約束條件作出可行域;
(2)聯(lián)立方程組求出A,C的坐標(biāo),得到AC的長度,代入三角形面積公式得答案.
解答 解:(1)由約束條件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$作出可行域如圖:
(2)聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x-y=1}\end{array}\right.$,解得A(-1,-2),
聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x+y=1}\end{array}\right.$,解得C(-1,2),
∴可行域面積$S=\frac{1}{2}×4×2=4$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,3x>0 | |
B. | ?α,β∈R,使sin(α+β)=sinα+sinβ | |
C. | 命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x” | |
D. | ?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|1<a<2} | B. | {a|-2<a<1} | C. | {a|0<a<2} | D. | {a|0<a<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示 | |
B. | 經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示 | |
C. | 不經(jīng)過原點的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示P1(x1,y1)、P2(x2,y2) | |
D. | 經(jīng)過任意兩個不同的點的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com