解:(1)由題得:
=(x,y).
=(4,y
0).
=(4-x
1,y
0-y
1).
∵
.
∴
?
(2)∵點(diǎn)A(x
1,y
1)在圓(x-2)
2+y
2=4上運(yùn)動(dòng),
∴(x
1-2)
2+y
12=4?
=4.
即
=4.
∴動(dòng)點(diǎn)M的軌跡方程為
=4.
整理得(x-4)(
)=0?x=4或x
3+xy
2-4y
2=0.
因?yàn)楫?dāng)x=4時(shí),A的坐標(biāo)為(0,0),與題中條件相矛盾.
∴動(dòng)點(diǎn)M的軌跡方程是:x
3+xy
2-4y
2=0.
(3)①關(guān)于X軸對(duì)稱,
將方程中的(x,y)換成(x,-y),方程形式不變,故關(guān)于X軸對(duì)稱;
②頂點(diǎn)為(0,0),
在方程中,令y=0得x=0;故曲線的頂點(diǎn)坐標(biāo)為(0,0);
③圖象范圍是:0≤x<4,y∈R.
∵
≥0得0≤x<4,y∈R.
④直線x=4是曲線的漸近線,
∵0≤x<4,
,當(dāng)x→4時(shí),y→∞,
故直線x=4是曲線的漸近線.
分析:(1)先求出:
=(x,y).
=(4,y
0).
=(4-x
1,y
0-y
1).再由條件得∴
即可解出示y
0,x
1,y
1;
(2)把所求的點(diǎn)A的坐標(biāo)代入圓(x-2)
2+y
2=4中,整理即可求出動(dòng)點(diǎn)M的軌跡方程F(x,y)=0;
(3)①先將方程中的(x,y)換成(x,-y),方程形式不變,得關(guān)于X軸對(duì)稱;
②令y=0得x=0;得曲線的頂點(diǎn)坐標(biāo)為(0,0);
③把軌跡方程F(x,y)=0整理锝
,因?yàn)槠椒綌?shù)大于等于0得0≤x<4,y∈R,
④0≤x<4,
,當(dāng)x→4時(shí),y→∞,可得直線x=4是曲線的漸近線.
點(diǎn)評(píng):本題主要考查向量在幾何中的應(yīng)用以及軌跡方程的求法,本題的難點(diǎn)在于對(duì)軌跡方程的整理,屬于一道難題.