(本題滿分12分)已知是函數(shù)
的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當,
時,證明:
(1)(2)要證明差的絕對值小于等于e,只要證明差介于-e和e之間即可,求解函數(shù)的 最值的差可知。
【解析】
試題分析:(Ⅰ)解:,
2分
由已知得,解得
.
當時,
,在
處取得極小值.
所以.
4分
(Ⅱ)證明:由(Ⅰ)知,,
.
當時,
,
在區(qū)間
單調(diào)遞減;
當時,
,
在區(qū)間
單調(diào)遞增.
所以在區(qū)間上,
的最小值為
.
8分
又,
,
所以在區(qū)間上,
的最大值為
.
10分
對于,有
.
所以.
12分
考點:函數(shù)的最值
點評:解決的關(guān)鍵是利用導(dǎo)數(shù)判定單調(diào)性,并能結(jié)合函數(shù)的最值來證明不等式,屬于中檔題。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角
、
、
所對的邊分別為
、
、
.
,且
.(1)求
的大��;(2)若
.求
.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若
的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
(本題滿分12分)
已知橢圓:
的長軸長是短軸長的
倍,
,
是它的左,右焦點.
(1)若,且
,
,求
、
的坐標;
(2)在(1)的條件下,過動點作以
為圓心、以1為半徑的圓的切線
(
是切點),且使
,求動點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量
與
是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求
的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com