若點(diǎn)P、Q分別在函數(shù)y=ex和函數(shù) y=lnx的圖象上,則P、Q兩點(diǎn)間的距離的最小值是 .
解析試題分析:考慮到兩曲線關(guān)于直線y=x對(duì)稱,求丨PQ丨的最小值可轉(zhuǎn)化為求P到直線y=x的最小距離,再利用導(dǎo)數(shù)的幾何意義,求曲線上斜率為1的切線方程,從而得此距離。解:∵曲線y=ex與曲線y=lnx互為反函數(shù),其圖象關(guān)于y=x對(duì)稱,故可先求點(diǎn)P到直線y=x的最近距離d,設(shè)曲線y=ex上斜率為1的切線為y=x+b,∵y’=ex,由ex=1,得x=0,故切點(diǎn)坐標(biāo)為(0,1),即b=1 ,∴丨PQ丨的最小值為2d=2
考點(diǎn):互為反函數(shù)的函數(shù)圖象的對(duì)稱性
點(diǎn)評(píng):本題主要考查了互為反函數(shù)的函數(shù)圖象的對(duì)稱性,以及導(dǎo)數(shù)的幾何意義,曲線的切線方程的求法,同時(shí)考查了化歸的思想方法,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù)的圖象與函數(shù)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com