【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足.設(shè)甲合作社的投入為x(單位:萬元),兩個(gè)合作社的總收益為fx)(單位:萬元).

1)當(dāng)甲合作社的投入為25萬元時(shí),求兩個(gè)合作社的總收益;

2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大?

【答案】(1) 總收益為萬元;(2) 該公司在甲合作社投人萬元,在乙合作社投人萬元,總收益最大,最大總收益為萬元

【解析】

(1) 根據(jù)題意,當(dāng)甲合作社的投入為25萬元時(shí),乙合作社的投入為47萬元,分別代入收益與投入的函數(shù)式,最后求和即可;

(2)首先確定函數(shù)的定義域,然后結(jié)合分段函數(shù)的解析式分類討論確定最大收益的安排方法即可得出答案.

(1) 當(dāng)甲合作社投入為萬元時(shí),乙合作社投入為萬元,

此時(shí)兩個(gè)合作社的總收益為: (萬元).

(2) 甲合作社的投入為萬元,則乙合作社的投人為萬元,

當(dāng),則,

,

,得,

則總收益為,

顯然當(dāng)時(shí),,

即此時(shí)甲投入萬元,乙投入萬元時(shí),總收益最大,最大收益為萬元.

當(dāng)時(shí),則,

顯然上單調(diào)遞減,所以

即此時(shí)甲、乙總收益小于萬元.

該公司在甲合作社投人萬元,在乙合作社投人萬元,總收益最大,最大總收益為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值

(2)定義:若函數(shù)在區(qū)間 上的取值范圍為,則稱區(qū)間為函數(shù)的“美麗區(qū)間”.試問函數(shù)上是否存在“美麗區(qū)間”?若存在,求出所有符合條件的“美麗區(qū)間”;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號分別為1,2,34,5,甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號,放回后乙再摸一個(gè)球,記下編號,如果兩個(gè)編號的和為偶數(shù)算甲贏,否則算乙贏.

)求甲贏且編號的和為6的事件發(fā)生的概率;

)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是長方體,OB1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )

A.A,M,O三點(diǎn)共線B.AM,O,A1不共面

C.A,MC,O不共面D.B,B1,O,M共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),,求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象過點(diǎn)

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù), ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(

A. 136π B. 144π C. 36π D. 34π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求的值.

(2)若,試求不等式的解集;

(3)若上的最小值為,求m的值.

查看答案和解析>>

同步練習(xí)冊答案