請先閱讀:在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得:
,
由求導(dǎo)法則,得(-sin2x)·2=4cosx·(-sinx),化簡得等式:sin2x=2cosx·sinx.
(1)利用上題的想法(或其他方法),試由等式(1+x)n=(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=.
(2)對于正整數(shù)n≥3,求證:
(i)=0;
(ii)=0;
(iii).
科目:高中數(shù)學(xué) 來源: 題型:閱讀理解
n |
k=2 |
C | k n |
n |
k=1 |
C | k n |
n |
k=1 |
C | k n |
n |
k=1 |
1 |
k+1 |
C | k n |
2n+1-1 |
n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
請先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡得等式:。
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:。
(2)對于正整數(shù),求證:
(i); (ii); (iii)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試題(江蘇卷) 題型:解答題
請先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡得等式:。
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:。
(2)對于正整數(shù),求證:
(i); (ii); (iii)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試題(江蘇卷) 題型:解答題
請先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡得等式:。
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:。
(2)對于正整數(shù),求證:
(i); (ii); (iii)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(江蘇卷23)請先閱讀:在等式()的兩邊求導(dǎo),得:
,由求導(dǎo)法則,得,化簡得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=(,正整數(shù)),證明:=.
(2)對于正整數(shù),求證:(i)=0;
(ii)=0;
(iii).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com