如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

 

【答案】

見解析.

【解析】本試題主要考查了立體幾何中的運用。

解:(I)證明:取AC中點F,連結(jié)OF、FB.

∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=, 又BD∥AE且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB                        …………4分

又∵FB平面ABC,OD平面ABC,∴OD∥面ABC。               …………6分

(II)當(dāng)N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結(jié)ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,  ∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。                                           …………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點,求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(Ⅰ)求證:OD∥平面ABC;
(Ⅱ)求直線CD和平面ODM所成角的正弦值;
(Ⅲ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(1)求異面直線AB與CE所成角的大。
(2)求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O,M,N分別為CE,AB,EM的中點.
(1)求證:OD∥平面ABC;
(2)求證:ON⊥平面ABDE;
(3)求直線CD與平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2,O、M分別為CE、AB的中點.
(1)求證:OD∥平面ABC;
(2)在棱EM上是否存在N,使ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由;
(3)求二面角O-ED-M的大小.

查看答案和解析>>

同步練習(xí)冊答案