【題目】已知,當(dāng)點(diǎn)的圖象上運(yùn)動(dòng)時(shí),點(diǎn)在函數(shù)的圖象上運(yùn)動(dòng)().

()求的表達(dá)式;

()已知關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

()設(shè),函數(shù)的值域?yàn)?/span>,求實(shí)數(shù)的值.

【答案】,;.

【解析】

試題分析:根據(jù)題意,聯(lián)立,從而可得解.由,得,從而可得,同理可求得;由()得,即,分離參數(shù)得,再由換元法求二次函數(shù)的最值,從而問(wèn)題可得解;由()、()可求得函數(shù)的解析式,并對(duì)函數(shù)的單調(diào)性進(jìn)行判斷,利用函數(shù)單調(diào)性求函數(shù)的最值,由題意,可建立關(guān)于的方程組,從而可得解.

試題解析:()由得,

. …… 2

得,

. …… 4

()方程有實(shí)根,

分離. …… 6

設(shè) …… 8

(),

下面證明上是減函數(shù)

任取,則

上遞減,故在上遞減 …… 10

,即,解得,

. …… 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若ab,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變量中不屬于分類變量的是( )

A. 性別 B. 吸煙

C. 宗教信仰 D. 國(guó)籍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是 .(填序號(hào))

當(dāng)0<CQ<時(shí),S為四邊形;

當(dāng)CQ=時(shí),S為等腰梯形;

當(dāng)CQ=時(shí),S與C1D1的交點(diǎn)R滿足C1R=

當(dāng)<CQ<1時(shí),S為六邊形;

當(dāng)CQ=1時(shí),S的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了普及環(huán)保知識(shí)增強(qiáng)環(huán)保意識(shí),某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識(shí)與專業(yè)有關(guān)?

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

乙班

30

總計(jì)

60

(2)為參加上級(jí)舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過(guò)預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過(guò)預(yù)選,若每位同學(xué)得60分以上的概率為,得80分以上的概率為,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過(guò)預(yù)選的人數(shù),

求X的分布列及期望E(X).

附: , n=a+b+c+d

P(K2>k0)

0.100

0.050

0.025

0.010[

0.005

k0

2.706

3.84

5.02

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為其導(dǎo)函數(shù),且時(shí)有極小值-9.

(1)求的單調(diào)遞減區(qū)間;

(2)若,,當(dāng)時(shí),對(duì)于任意,的值至少有一個(gè)是正數(shù),求實(shí)數(shù)的取值范圍;

(3)若不等式為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c過(guò)點(diǎn)A10),C0,3

1)求此二次函數(shù)的解析式;

2)在拋物線上存在一點(diǎn)P使ABP的面積為10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓和圓

(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為是,求直線的方程;

(2)設(shè)為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)的無(wú)窮多對(duì)互相垂直的直線,它們分別與圓和圓相交,且直線與被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得樣本數(shù)據(jù)的頻率分布直方圖如下.

1,并根據(jù)圖中的數(shù)據(jù),用分層抽樣的方法抽取個(gè)元件,元件壽命落在之間的應(yīng)抽取幾個(gè)?

21中抽出的壽命落在之間的元件中任取個(gè)元件,求事件恰好有一個(gè)元件壽命落在之間,一個(gè)元件壽命落在之間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案