【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,如將年人流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;(,)
(2)水電站希望安裝的發(fā)電機盡可能運行最多,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關系:
年流入量 | |||
發(fā)電機最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為4000萬元,若某臺發(fā)電機未運行,則該臺年虧損600萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?
【答案】(1);(2)2臺.
【解析】
(1)求出,,,由二項分布,未來4年中,至多有1年的年入流量超過120的概率.
(2)記水電站的總利潤為(單位,萬元),求出安裝1臺發(fā)電機、安裝2臺發(fā)電機、安裝3臺發(fā)電機時的分布列和數(shù)學期望,由此能求出欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機的臺數(shù).
解:(1)依題意,,
,
,
由二項分布,未來4年中,至多有1年的年入流量超過120的概率為:
.
(2)記水電站的總利潤為Y(單位,萬元)
安裝1臺發(fā)電機的情形:
由于水庫年入流總量大于40,故一臺發(fā)電機運行的概率為1,對應的年利潤,,
安裝2臺發(fā)電機的情形:
依題意,當時,一臺發(fā)電機運行,此時,
因此,
當時,兩臺發(fā)電機運行,此時,因此,,
由此得Y的分布列如下
Y | 3400 | 8000 |
P | 0.2 | 0.8 |
所以.
安裝3臺發(fā)電機的情形:
依題意,當時,一臺發(fā)電機運行,此時,
因此,
當時,兩臺發(fā)電機運行,此時,因此,,
當時,三臺發(fā)電機運行,此時,因此,,
由此得Y的分布列如下
Y | 2800 | 7400 | 12000 |
P | 0.2 | 0.7 | 0.1 |
所以.
綜上,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機2臺.
科目:高中數(shù)學 來源: 題型:
【題目】未來創(chuàng)造業(yè)對零件的精度要求越來越高.打印通常是采用數(shù)字技術材料打印機來實現(xiàn)的,常在模具制造、工業(yè)設計等領域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術打印而成的零部件.該技術應用十分廣泛,可以預計在未來會有發(fā)展空間.某制造企業(yè)向高校打印實驗團隊租用一臺打印設備,用于打印一批對內徑有較高精度要求的零件.該團隊在實驗室打印出了一批這樣的零件,從中隨機抽取個零件,度量其內徑的莖葉圖如圖(單位:).
(1)計算平均值與標準差;
(2)假設這臺打印設備打印出品的零件內徑服從正態(tài)分布,該團隊到工廠安裝調試后,試打了個零件,度量其內徑分別為(單位:):、、、、,試問此打印設備是否需要進一步調試?為什么?
參考數(shù)據(jù):,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù), ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),若存在區(qū)間,同時滿足下列條件:①在上是單調的;②當定義域是時,的值域也是,則稱為該函數(shù)的“和諧區(qū)間”.下列函數(shù)存在“和諧區(qū)間”的是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個數(shù)為4,求a的范圍;
(2)若a∈Z,當A∩B≠時,求a的最小值,并求當a取最小值時A∪B.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為D的函數(shù),若同時滿足下列條件:①在D內單調遞增或單調遞減;②存在區(qū)間,使在上的值域為.那么把稱為閉函數(shù).下列結論正確的是( )
A.函數(shù)是閉函數(shù)
B.函數(shù)是閉函數(shù)
C.函數(shù)是閉函數(shù)
D.時,函數(shù)是閉函數(shù)
E.時,函數(shù)是閉函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設分別為的中點,求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com