1.在平面直角坐標系xOy中,已知圓O的方程為x2+y2=2
(1)若直線l與圓O切于第一象限,且與坐標軸交于點D,E,當(dāng)DE長最小時,求直線l的方程;
(2)設(shè)M,P是圓O上任意兩點,點M關(guān)于x軸的對稱點N,若直線MP,NP分別交x軸于點(m,0)(n,0),問mn是否為定值?若是,請求出該定值;若不是,請說明理由.

分析 (1)設(shè)直線l的方程,利用直線l與圓O相切,及基本不等式,可求DE長最小時,直線l的方程.
(2)設(shè)M(x1,y1),P(x2,y2),則N(x1,-y1),${{x}_{1}}^{2}+{{y}_{1}}^{2}$=2,${{x}_{2}}^{2}+{{y}_{2}}^{2}$=2,求出直線MP、NP分別與x軸的交點,進而可求mn的值2

解答 解:(1)設(shè)直線l的方程為$\frac{x}{a}+\frac{y}=1(a>0,b>0)$,
即bx+ay-ab=0,
由直線l與圓O相切,得$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$=$\sqrt{2}$,即$\frac{1}{{a}^{2}}+\frac{1}{^{2}}$=$\frac{1}{2}$,
DE2=a2+b2=2(a2+b2)($\frac{1}{{a}^{2}}+\frac{1}{^{2}}$)≥8,
當(dāng)且僅當(dāng)a=b=2時取等號,
此時直線l的方程為x+y-2=0,
所以當(dāng)DE長最小時,直線l的方程為x+y-2=0.
(3)設(shè)M(x1,y1),P(x2,y2),
則N(x1,-y1),${{x}_{1}}^{2}+{{y}_{1}}^{2}$=2,${{x}_{2}}^{2}+{{y}_{2}}^{2}$=2,
直線MP與x軸交點($\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$,0),m=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$,
直線NP與x軸交點($\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}}{{y}_{2}+{y}_{1}}$,0),n=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}}{{y}_{2}+{y}_{1}}$,
mn=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$×$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}}{{y}_{2}+{y}_{1}}$=$\frac{{{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}}{{{y}_{2}}^{2}-{{y}_{1}}^{2}}$=$\frac{(2-{{y}_{1}}^{2}){{y}_{2}}^{2}-(2-{{y}_{2}}^{2}){{y}_{1}}^{2}}{{{y}_{2}}^{2}-{{y}_{1}}^{2}}$=2.
∴mn為定值2.

點評 本題考查直線與圓的位置關(guān)系,考查基本不等式的運用,考查學(xué)生的運算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知斜率為1的直線l與拋物線y2=2px(p>0)交于位于x軸上方的不同兩點A,B,記直線OA,OB的斜率分別為K1,K2,則K1+K2的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)f(x)=(k2+k-1)x${\;}^{{k}^{2}-3k}$(k∈Z)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C:(x-1)2+(y-2)2=4.
(1)求直線2x-y+4=0被圓C所截得的弦長;
(2)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點P$({1,-\frac{{\sqrt{3}}}{2}})$,且離心率為$\frac{{\sqrt{3}}}{2}$,左焦點為F,左、右頂點分別為A、B,過F的直線l與橢圓Γ相交于C、D兩點.
(1)求橢圓Γ的方程;
(2)記△ABC,△ABD的面積分別為S1,S2,求S1-S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點H在圓D:(x-2)2+(y+3)2=32上運動,點P的坐標為(-6,3),線段PH的中點為M.
(1)求點M的軌跡方程;
(2)平面內(nèi)是否存在定點A(a,b)(a≠0),使|MO|=λ|MA|(λ≠1常數(shù)),若存在,求出A的坐標及λ的值;若不存在,說明理由;
(3)若直線y=kx與M的軌跡交于B、C兩點,點N(0,t)使NB⊥NC,求實數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+2(a-1)x+2,x∈[-2,4].
(1)當(dāng)a=2時,求f(x)的最大值與最小值;
(2)在區(qū)間[-2,4]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|lnx|的零點個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{2}$=1上的點,則P,Q兩點間的最大距離是( 。
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.2$\sqrt{15}$+$\sqrt{2}$D.6$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案