等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列
(Ⅰ)求{an}的公比q;
(Ⅱ)a1-a3=3,求Sn
考點(diǎn):等比數(shù)列的前n項和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件推導(dǎo)出2(a1+a1q+a1q2)=a1+a1+a1q,由此能求出{an}的公比q.
(Ⅱ)由a1-a3=3,q=-
1
2
,求出a1=4,由此能求出Sn
解答: 解:(Ⅰ)∵等比數(shù)列{an}的前n項和為Sn,
S1,S3,S2成等差數(shù)列,
∴2(a1+a1q+a1q2)=a1+a1+a1q,
解得q=-
1
2
或q=0(舍).
∴q=-
1
2

(Ⅱ)∵a1-a3=3,q=-
1
2

a1-
1
4
a1=3
,a1=4,
Sn=
4[1-(-
1
2
)n]
1+
1
2
=
8
3
[1-(-
1
2
n].
點(diǎn)評:本題考查數(shù)列的公比和前n項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga|x-1|在(0,1)上遞減,那么f(x)在(1,+∞)上( 。
A、遞增且無最大值
B、遞減且無最小值
C、遞增且有最大值
D、遞減且有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
2
)=
5
5
,α∈(0,π),求
sin(α-
π
2
)-cos(
2
+α)
sin(π-α)+cos(3π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,求證:
(1)AC⊥平面B1D1DB;
(2)BD1⊥平面ACB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-2x+a,a∈R
(1)求不等式f(x)≥f(a)的解;
(2)若af(x)-a2+3>0對一切x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某簡諧運(yùn)動的圖象對應(yīng)的函數(shù)解析式為:y=
2
sin(2x-
π
4

(1)指出此簡諧運(yùn)動的周期、振幅、頻率、相位和初相;
(2)利用“五點(diǎn)法”的完整過程作出函數(shù)在一個周期(閉區(qū)間)上的簡圖;
(3)說明它是由函數(shù)y=sinx的圖象經(jīng)過哪些變換而得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx,-1),向量
n
=(
3
cosx,
1
2
),函數(shù)f(x)=(
m
+
n
)•
m

(Ⅰ)求f(x)的最小正周期T及單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)y=f(x)-t在x∈[
π
4
,
π
2
]上有零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸.已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為
x=2+2t
y=
3
-2
3
t
(其中t為參數(shù))
(1)求曲線C1的直角坐標(biāo)方程和曲線C2的普通方程;
(2)判斷曲線C1和曲線C2的位置關(guān)系;若曲線C1和曲線C2相交,求出弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ)的圖象如圖所示(A>0,ω>0,|φ|<
π
2
).
(1)若f(
π
2
)=-
2
3
,求f(0)的值.
(2)求滿足f(x)>-
A
2
的x的取值范圍.
(3)若A=1,令g(x)=f(
1
3
x+
π
12
),求方程lg|x|=2g(x)的解的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案