【題目】表面積為的球面上有四點S、A、B、C,且是等邊三角形,球心O到平面ABC的距離為1,若平面平面ABC,則三棱錐體積的最大值為______

【答案】

【解析】

由球的表面積求出半徑OB,再計算的面積為定值,由此得出SAB的中垂線上且位于球心同側(cè)時,棱錐體積的最大,結(jié)合圖形求出點S到平面ABC的距離,由此求得棱錐體積的最大值.

過球心O作平面ABC的垂線段OD,垂足為D,過D,垂足為E

連接BD,則,,如圖所示;

則球的表面積為,解得半徑;

,

是等邊三角形,的中心,

,

;

由球的對稱性可知當SAB的中垂線上時,S到平面ABC的距離最大,

O作平面SAB的垂線段SH,垂足為H

平面平面ABC,,平面平面,平面ABC

平面SAB;又平面SAB

,

四邊形ODEH是矩形,

,

,

,

則三棱錐面積的最大值為:

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.

(1)若點的極坐標為,求的值;

(2)求曲線的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)橢圓 ,長軸的右端點與拋物線 的焦點重合,且橢圓的離心率是

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過作直線交拋物線, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()

A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為

B. 函數(shù)圖像關(guān)于點對稱

C. 函數(shù)圖像關(guān)于直線對稱

D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們知道,地球上的水資源有限,愛護地球、節(jié)約用水是我們每個人的義務(wù)和責任.某市政府為了對自來水的使用進行科學管理,節(jié)約水資源,計劃確定一個家庭年用水量的標準,為此,對全市家庭日常用水的情況進行抽樣調(diào)查,并獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結(jié)果如下表所示.

(Ⅰ)分別求出的值;

(Ⅱ)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭平均用水量;

(Ⅲ)從樣本中年用水量在(單位:立方米)的個家庭中任選個,作進一步跟蹤研究,求年用水量最多的家庭被選中的概率(個家庭的年用水量都不相等).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴重污染

該社團將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.

(1)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達到優(yōu)良?

(2)從這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)中,隨機抽取三天,求恰好有一天空氣質(zhì)量良的概率;

(3)從這10天的數(shù)據(jù)中任取三天數(shù)據(jù),記表示抽取空氣質(zhì)量良的天數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動圓M與圓F1x2+y2+6x+50外切,同時與圓F2x2+y26x910內(nèi)切.

1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;

2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點是拋物線上的動點,的準線上的動點,直線且與為坐標原點)垂直,則點的距離的最小值的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

同步練習冊答案