如圖所示,在△ABC中,點M是BC的中點,點N在AC上,且AN=2NC,AM與BN相交于點P,求AP∶PM的值.

AP∶PM=4∶1


解析:

方法一  設(shè)e1=,e2=,

=+=-3e2-e1

=+=2e1+e2.

因為A、P、M和B、P、N分別共線,所以存在實數(shù)、,使==-3e2-e1

==2e1+e2,∴=-=(+2)e1+(3+)e2,

另外=+=2e1+3e2,

,∴,

=,=,∴AP∶PM=4∶1.

方法二  設(shè)=

=+)=+,

=+.

∵B、P、N三點共線,∴-=t(-),

=(1+t)-t

+=1,=,∴AP∶PM=4∶1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC邊上的中線BD=
5
,求:
(1)BC的長度;
(2)sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點D是邊AB的中點,則向量
DC
=( 。
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點M,則BM<1的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,則
AD
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點M,求BM<1的概率.

查看答案和解析>>

同步練習(xí)冊答案