【題目】已知直線的方程為,拋物線:的焦點為,點是拋物線上到直線距離最小的點.
(1)求點的坐標;
(2)若直線與拋物線交于兩點,為中點,且,求直線的方程.
【答案】(1)(1,2) (2)9x+3y-7=0
【解析】
(1)根據(jù)點到直線的距離公式和二次函數(shù)的性質(zhì)得出P點坐標;(2)設出點M的坐標,由向量坐標化得到M(1,-),設出點A和點B的坐標,代入拋物線,兩式做差得到斜率,由點斜式得到直線方程.
(1)設點P的坐標為(x0,y0),則y02=4x0,所以,點P到直線的距離:
d ====≥
當且僅當y0=2時取最小值,此時P點坐標為(1,2).
(2)設點M的坐標為(x1,y1)因為=3, 又點P(1,2),又F(1,0)可得:(0,-2)=3(x1-1,y1-0)
經(jīng)計算得:點M(1,-)
設點A(x2,y2)點B(x3,y3),于是
兩式相減可得:(y3- y2)( y3+y2)=4(x3-x2) 化簡得: =,
所以k=-3
于是,y+=-3(x-1),整理得9x+3y-7=0
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)),在以原點O為極點,以軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)求直線的普通方程及曲線的直角坐標方程;
(2)設是曲線上的一動點, 的中點為,求點到直線的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若時,求函數(shù)的最小值;
(2)若函數(shù)既有極大值又有極小值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,以兩條互相垂直的公路所在直線分別為x軸,y軸建立平面直角坐標系,公路附近有一居民區(qū)EFG和一風景區(qū),其中單位:百米,,風景區(qū)的部分邊界為曲線C,曲線C的方程為,擬在居民和風景區(qū)間辟出一個三角形區(qū)域EMN用于工作人員辦公,點M,N分別在x軸和EF上,且MN與曲線C相切于P點.
設P點的橫坐標為t,寫出面積的函數(shù)表達式;
當t為何值時,面積最。坎⑶蟪鲎钚∶娣e.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com