【題目】某中學有學生 人,其中一年級 人,二、三年級各 人,現(xiàn)要用抽樣方法抽取 人形成樣本,將學生按一、二、三年級依次統(tǒng)一編號為 , , ,如果抽得號碼有下列四種情況:

, , , , , ;

, , , , , , ,

, , , , , , ,

, , , , , , ;

其中可能是由分層抽樣得到,而不可能是由系統(tǒng)抽樣得到的一組號碼為

A. ①② B. ②③ C. ①③ D. ①④

【答案】D

【解析】先考慮那種情況為分層抽樣,分層抽樣需按年級分成三層,一年級抽4個人,二三年級個抽3個人,也即1108號抽4個,109189號抽3個,190270號抽3個,可判斷①②④是分層抽樣,

在判斷①②④中那幾個是系統(tǒng)抽樣,系統(tǒng)抽樣需把1270號分成均與的10部分,每部分按事先約定好的方法抽取1個,則②為系統(tǒng)抽樣。

本題選擇D選項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】連江一中第49屆田徑運動會提出了“我運動、我陽光、我健康、我快樂”的口號,某同學要設(shè)計一張如圖所示的豎向張貼的長方形海報進行宣傳,要求版心面積為162 版心是指圖中的長方形陰影部分,為長度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .

)若設(shè)版心的高為 ,求海報四周空白面積關(guān)于的函數(shù)的解析式;

)要使海報四周空白面積最小,版心的高和寬該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是邊長為3的正方形,平面,,且,

1試在線段上確定一點的位置,使得平面;

2求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)討論是函數(shù)的極大值還是極小值;

(2)過點作曲線的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1的單調(diào)區(qū)間

2為整數(shù), 且當時,, 的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等比數(shù)列的前n項和為Sn,已知a1=2,且4S1,3S2,2S3成等差數(shù)列.

)求數(shù)列的通項公式;

)設(shè),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】迭代法是用于求方程或方程組近似根的一種常用的算法設(shè)計方法.設(shè)方程為,用某種數(shù)學方法到處等價的形式,然后按以下步驟執(zhí)行

(1)選一個方程的近似根,賦給變量;

(2)將的值保存于變量然后計算,并將結(jié)果存于變量;

(3)當的差的絕對值還小于指定的精度要求時重復步驟(2)的計算.若方程有根,則按上述方法求得的就認為是方程的根試用迭代法求某個數(shù)的平方根,用流程圖和偽代碼表示問題的算法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是12.

(1)求的解析式;

(2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合為函數(shù)的定義域,集合為不等式的解集.

(1)若,求;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案