拋物線y2=-8x的焦點(diǎn)與雙曲線
x2
a2
-y2=1的左焦點(diǎn)重合,則這條雙曲線的兩條漸近線的夾角為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件推導(dǎo)出a2+1=4,從而得到雙曲線的漸近線方程為y=±
3
3
x
,由此能求出這條雙曲線的兩條漸近線的夾角.
解答: 解:∵拋物線y2=-8x的焦點(diǎn)F(-2,0)與雙曲線
x2
a2
-y2=1的左焦點(diǎn)重合,
∴a2+1=4,解得a=
3
,
∴雙曲線的漸近線方程為y=±
3
3
x

∴這條雙曲線的兩條漸近線的夾角為
π
3
,
故答案為:
π
3
點(diǎn)評(píng):本題考查雙曲線的兩條漸近線的夾角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意拋物線性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程log2(4x-3)=x+1的解x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x-sin2x的最小正周期T=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(0,4),取直線l上的一點(diǎn)P作圓C:x2+y2-2y=0的切線PA、PB(A、B為切點(diǎn)),若四邊形PACB的面積的最小值為2,則直線l的斜率k為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x+a≥0,x∈R},B={x||x-1|≤3,x∈R}.若(∁UA)∩B=[-2,4],則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<m,n<1,則
mn(1-m-n)
(m+n)(1-m)(1-n)
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
3
4
.則拋物線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(a+b+c)6的展開式中,含a2b3c的項(xiàng)的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
a+i
4+3i
為純虛數(shù),則實(shí)數(shù)a的值為(  )
A、
3
4
B、-
3
4
C、
4
3
D、-
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案