(13分)點(diǎn)P為圓上一個(gè)動(dòng)點(diǎn),M為點(diǎn)P在y軸上的投影,動(dòng)點(diǎn)Q滿足
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)一條直線l過點(diǎn),交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程。

(1).(2).[來

解析試題分析:(1)變形得,即P點(diǎn)為M和Q的中點(diǎn),設(shè)動(dòng)點(diǎn)Q的坐標(biāo)為(x,y),利用“代入法”即得所求軌跡方程.
(2)首先考慮直線l的斜率不存在的情況,不符合題意;
設(shè)直線l的斜率為k,則直線方程為,與橢圓方程聯(lián)立,應(yīng)用韋達(dá)定理得:

從而得到弦AB的中點(diǎn) N點(diǎn)坐標(biāo)為
,可得的方程,求,求得直線l的方程.[來
試題解析:(1)變形得,即P點(diǎn)為M和Q的中點(diǎn),設(shè)動(dòng)點(diǎn)Q的坐標(biāo)為(x,y),則P點(diǎn)坐標(biāo)為,將其代入到圓的方程中,得,即為所求軌跡方程。
(2)當(dāng)直線l的斜率不存在時(shí),顯然不符合條件;
設(shè)直線l的斜率為k,則直線方程為,將其代入到橢圓方程中并整理得

設(shè),則由韋達(dá)定理得:
[來源:Z,xx,k.Com]
設(shè)弦AB中點(diǎn)為N,則N點(diǎn)坐標(biāo)為,
由題意得,即
所以,解得,所以所求直線l的方程為.[來
考點(diǎn):平面向量的數(shù)量積,直線與橢圓的位置關(guān)系,直線垂直的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為、,過點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問:在y軸正半軸上是否存在一個(gè)定點(diǎn)M滿足,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),,動(dòng)點(diǎn)G滿足
(Ⅰ)求動(dòng)點(diǎn)G的軌跡的方程;
(Ⅱ)已知過點(diǎn)且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點(diǎn).在線段上是否存在點(diǎn),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓及定點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),點(diǎn)上,且滿足,點(diǎn)的軌跡為曲線
(1)求曲線的方程;
(2)若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在曲線上,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿足(其中O為原點(diǎn)),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),且離心率
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案