3.已知函數(shù)f(x)=$\frac{alnx-b{e}^{x}}{x}$ (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(I)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(II)(i)當 a=b=l 時,證明:xf(x)+2<0;
(ii)當 a=1,b=-1 時,若不等式:xf(x)>e+m(x-1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.

分析 (Ⅰ)求出原函數(shù)的導函數(shù),由f′(e)=0得b=0,可得f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$.然后對a分類討論,可知當a>0時,f(x)有極大值而無極小值;當a<0時,f(x)有極小值而無極大值.從而得到實數(shù)a的取值范圍為(-∞,0);
(Ⅱ)(i)當a=b=1時,設(shè)g(x)=xf(x)+2=lnx-ex+2.求其導函數(shù),可得g′(x)=$\frac{1}{x}-{e}^{x}$在區(qū)間(0,+∞)上為減函數(shù),結(jié)合零點存在定理可得存在實數(shù)x0∈($\frac{1}{2}$,1),使得$g′({x}_{0})=\frac{1}{{x}_{0}}-{e}^{{x}_{0}}=0$.得到g(x)在區(qū)間(0,x0)內(nèi)為增函數(shù),在(x0,+∞)內(nèi)為減函數(shù).又$g′({x}_{0})=\frac{1}{{x}_{0}}-{e}^{{x}_{0}}=0$,得$\frac{1}{{x}_{0}}={e}^{{x}_{0}}$,x0=-lnx0
由單調(diào)性知g(x)max<0,即xf(x)+2<0;
(ii)xf(x)>e+m(x-1)?xf(x)-m(x-1)>e,當 a=1,b=-1 時,設(shè)h(x)=xf(x)-m(x-1)=lnx+ex-m(x-1).利用兩次求導可得當x>1時,h′(x)>h′(1)=1+e-m.然后分當1+e-m≥0時和當1+e-m<0時求解m的取值范圍.

解答 (Ⅰ)解:∵f(x)=$\frac{alnx-b{e}^{x}}{x}$,∴f′(x)=$\frac{a(1-lnx)-b{e}^{x}(x-1)}{{x}^{2}}$.
∵f′(e)=0,∴b=0,則f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$.
當a>0時,f′(x)在(0,e)內(nèi)大于0,在(e,+∞)內(nèi)小于0,
∴f(x)在(0,e)內(nèi)為增函數(shù),在(e,+∞)內(nèi)為減函數(shù),即f(x)有極大值而無極小值;
當a<0時,f(x)在(0,e)內(nèi)為減函數(shù),在(e,+∞)內(nèi)為增函數(shù),即f(x)有極小值而無極大值.
∴a<0,即實數(shù)a的取值范圍為(-∞,0);
(Ⅱ)(i)證明:當a=b=1時,設(shè)g(x)=xf(x)+2=lnx-ex+2.
g′(x)=$\frac{1}{x}-{e}^{x}$在區(qū)間(0,+∞)上為減函數(shù),又g′(1)=1-e<0,g′($\frac{1}{2}$)=2-$\sqrt{e}>0$.
∴存在實數(shù)x0∈($\frac{1}{2}$,1),使得$g′({x}_{0})=\frac{1}{{x}_{0}}-{e}^{{x}_{0}}=0$.
此時g(x)在區(qū)間(0,x0)內(nèi)為增函數(shù),在(x0,+∞)內(nèi)為減函數(shù).
又$g′({x}_{0})=\frac{1}{{x}_{0}}-{e}^{{x}_{0}}=0$,
∴$\frac{1}{{x}_{0}}={e}^{{x}_{0}}$,x0=-lnx0
由單調(diào)性知,$g(x)_{max}=g({x}_{0})=ln{x}_{0}-{e}^{{x}_{0}}+2$=$-{x}_{0}-\frac{1}{{x}_{0}}+2=-({x}_{0}+\frac{1}{{x}_{0}})+2$.
又x0∈($\frac{1}{2}$,1),∴-(${x}_{0}+\frac{1}{{x}_{0}}$)<-2.
∴g(x)max<0,即xf(x)+2<0;
(ii)xf(x)>e+m(x-1)?xf(x)-m(x-1)>e,
當 a=1,b=-1 時,設(shè)h(x)=xf(x)-m(x-1)=lnx+ex-m(x-1).
則h′(x)=$\frac{1}{x}+{e}^{x}-m$.
令t(x)=h′(x)=$\frac{1}{x}+{e}^{x}-m$.
∵x>1,∴t′(x)=${e}^{x}-\frac{1}{{x}^{2}}=\frac{{e}^{x}{x}^{2}-1}{{x}^{2}}>0$.
∴h′(x)在(1,+∞)內(nèi)單調(diào)遞增,
∴當x>1時,h′(x)>h′(1)=1+e-m.
①當1+e-m≥0時,即m≤1+e時,h′(x)>0,
∴h(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增,
∴當x>1時,h(x)>h(1)=e恒成立;
②當1+e-m<0時,即m>1+e時,h′(x)<0,
∴存在x0∈(1,+∞),使得h′(x0)=0.
∴h(x)在區(qū)間(1,x0)內(nèi)單調(diào)遞減,在(x0,+∞)內(nèi)單調(diào)遞增.
由h(x0)<h(1)=e,
∴h(x)>e不恒成立.
綜上所述,實數(shù)m的取值范圍為(-∞,1+e].
∴實數(shù)m的最大值為:1+e.

點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)、導數(shù)、不等式等基礎(chǔ)知識,以及綜合運用上述知識分析問題和解決問題的能力,是壓軸題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{5}$+y2=1,點F為橢圓的左焦點,點P為橢圓上任意一點,點A(5,4),那么|PA|-|PF|的最小值5$-2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.當x>0時,x+$\frac{4}{x}$的最小值為(  )
A.1B.2C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合M={x|-3<x<1},N={x|x≤-3},則M∪N=( 。
A.B.{x|x<1}C.{x|x≥1}D.{x|x≥-3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=x2-2x.
(1)畫出偶函數(shù)f(x)的圖象;并根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時寫出函數(shù)的值域;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(α)=cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$
(Ⅰ)當α為第二象限角時,化簡f(α);
(Ⅱ)當α∈($\frac{π}{2}$,π)時,求f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)M、N、T是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上三個點,M、N在直線x=8上的攝影分別為M1、N1
(Ⅰ)若直線MN過原點O,直線MT、NT斜率分別為k1,k2,求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點,點L坐標為(3,0),△M1N1L與△MNL面積之比為5,求MN中點K的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{{2}^{|x|+1}{+x}^{3}+2}{{2}^{|x|}+1}$的最大值為M,最小值為m,則M+m等于(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前 n 項和為 Sn,a1=1,且 an+1=2Sn+1,n∈N?
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令 c=log3a2n,bn=$\frac{1}{{{c_n}•{c_{n+2}}}}$,記數(shù)列{bn}的前 n 項和為Tn,若對任意 n∈N?,λ<Tn 恒成立,求實數(shù) λ 的取值范圍.

查看答案和解析>>

同步練習冊答案