【題目】已知A(4, 0),B2, 2),C (6, 0),記ABC的外接圓為P

1P的方程.

(2)對(duì)于線段PA上的任意一點(diǎn)G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點(diǎn)E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說(shuō)明理由.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)⊙P的方程為x2y2DxEyF=0,將A(4, 0),B(2, 2),C (6, 0)代入圓方程,解方程組即可得結(jié)果;(2)假設(shè)存在圓B: 滿足題意, ,又A(4, 0), PA的直線方程是: ,設(shè)Gm, n)(),設(shè)F(x, y),則中點(diǎn),根據(jù)E、F在圓B上可得,進(jìn)而可得結(jié)果.

試題解析:(1) 解法一:設(shè)P的方程為x2y2DxEyF0

因?yàn)辄c(diǎn)A,B,C均在所求圓上,所以

解得

P的方程是

解法二: A(4, 0),B2, 2),C (6, 0)

AB的中垂線方程為: ,

AC的中垂線方程為: ,

聯(lián)立①②可得圓心,

半徑

P的方程是

2)假設(shè)存在圓B: 滿足題意,

,又A(4, 0),

PA的直線方程是: ,

設(shè)Gm, n)(

則有 ,

設(shè)F(x, y),則中點(diǎn),

E、F在圓B上可得:,

,①

存在EF即方程組①有解,即圓與圓有公共點(diǎn),

所以,

代入可得

對(duì)任意恒成立,

上單調(diào)遞減,在單調(diào)遞增,

,

,解得,

E為線段GF的中點(diǎn), E、F在圓B上,

G在圓B

,即恒成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長(zhǎng)方形的長(zhǎng)為x米.

(Ⅰ求底面積,并用含x的表達(dá)式表示池壁面積;

(Ⅱ怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

I)設(shè),求的單調(diào)區(qū)間;

II)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的圖象向右平移個(gè)單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時(shí),該產(chǎn)品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(2)從甲廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,也從乙廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣場(chǎng)的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場(chǎng)的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵(lì)賣場(chǎng),在同型號(hào)電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)電視機(jī)的星級(jí)賣場(chǎng)”.

(1)求在這10個(gè)賣場(chǎng)中,甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”的個(gè)數(shù);

(2)若在這10個(gè)賣場(chǎng)中,乙型號(hào)電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號(hào)電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷b為何值時(shí),達(dá)到最值.

(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線y=f(x)在點(diǎn)(1, f(1))處的切線方程為y=e(x-1)+2.

(1)求 (2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為過(guò)右焦點(diǎn)軸不垂直的直線交橢圓于兩點(diǎn)

1求橢圓的方程;

2在線段上是否存在點(diǎn),使得?若存在,求出的取值范圍;若不存在,請(qǐng)

說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),).

(1)若的部分圖像如圖所示,的解析式;

(2)在(1)的條件下,求最小正實(shí)數(shù),使得函數(shù)的圖象向左平移個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù)

(3)若上是單調(diào)遞增函數(shù),的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案