【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求點D到平面ABC1的距離d.
【答案】(Ⅰ)見解析; (Ⅱ).
【解析】
(I)利用勾股定理逆定理證明AC⊥AB,結(jié)合AC⊥AA1可得AC平面ABB1A1.
(II)根據(jù)列方程解出d.
(Ⅰ)證明:∵在底面ABCD中,AB=1,,BC=2,
∴BC2=AC2+AB2,即AB⊥AC,
∵側(cè)棱AA1⊥底面ABCD,AC平面ABCD,
∴AA1⊥AC,
又∵AA1∩AB=A,AA1平面ABB1A1,AB平面ABB1A1,
∴AC⊥平面ABB1A1.
(Ⅱ)連接DB,DC1,
由(Ⅰ)知△ABC為直角三角形,且,
∴S△ABD==S△ABC=,
又∵側(cè)棱CC1⊥底面ABCD,
∴,
∵AB⊥AC,AB⊥CC1,AC∩CC1=C,
∴AB⊥平面ACC1,且AC1平面ACC1,
∴AB⊥AC1,
又∵,
∴,
∴=,
解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線與橢圓交于兩點,點是橢圓的右頂點,直線與直線分別與軸交于兩點,試問在軸上是否存在一個定點使得?若是,求出定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)拋擲一顆骰子兩次,定義隨機變量
試寫出隨機變量的分布列(用表格格式);
(2)拋擲一顆骰子兩次,在第一次擲得向上一面點數(shù)是偶數(shù)的條件下,求第二次擲得向上一面點數(shù)也是偶數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分圖象如圖所示,當(dāng)x=時,y最大值1,當(dāng)x=時,取得最小值-1
(1)求y=f(x)的解析式;
(2)寫出此函數(shù)取得最大值時自變量x的集合和它的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=emx+x2﹣mx(m∈R).
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m<0,且曲線y=f(x)在點(1,f(1))處的切線與直線x+(e+1)y=0垂直.
(i)當(dāng)x>0時,試比較f(x)與f(﹣x)的大。
(ii)若對任意x1 , x2(x1≠x2),且f(x1)=f(x2),證明:x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓: 的長軸為,過點的直線與軸垂直,橢圓上一點與橢圓的長軸的兩個端點構(gòu)成的三角形的最大面積為2,且橢圓的離心率為.
(1)求橢圓的標準方程;
(2) 設(shè)是橢圓上異于, 的任意一點,連接并延長交直線于點, 點為的中點,試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系中,圓C的方程為 (θ為參數(shù)).以坐標原點O為極點, 軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程.
(Ⅰ)當(dāng)時,判斷直線與的關(guān)系;
(Ⅱ)當(dāng)上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.
產(chǎn)品質(zhì)量/克 | 頻數(shù) |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
甲流水線樣本頻數(shù)分布表:
甲流水線 | 乙流水線 | 總計 | |
合格品 | |||
不合格品 | |||
總計 |
(1)根據(jù)上表數(shù)據(jù)作出甲流水線樣本的頻率分布直方圖;
(2)若以頻率作為概率,試估計從乙流水線任取件產(chǎn)品,該產(chǎn)品恰好是合格品的概率;
(3)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān)?
附表:
(參考公式: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1;第二次取2個連續(xù)偶數(shù)2,4;第三次取3個連續(xù)奇數(shù)5,7,9;第四次取4個連續(xù)偶數(shù)10,12,14,16;第五次取5個連續(xù)奇數(shù)17,19,21,23,25,按此規(guī)律取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16,17,19…,則在這個子數(shù)中第2014個數(shù)是( )
A. 3965 B. 3966 C. 3968 D. 3989
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com