(本小題滿分13分)已知函數(shù)的導(dǎo)函數(shù),數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式及的最大值;
(2)令,其中,求的前項(xiàng)和.

(1)當(dāng)時(shí),取得最大值
(2)
解:(Ⅰ),
得:,所以-----------------------2分
又因?yàn)辄c(diǎn)均在函數(shù)的圖象上,所以有
當(dāng)時(shí),
當(dāng)時(shí),,-----------------------4分
,當(dāng)時(shí),取得最大值
綜上, ,當(dāng)時(shí),取得最大值-----------------6分
(Ⅱ)由題意得-----------------------8分
所以,即數(shù)列是首項(xiàng)為,公比是的等比數(shù)列
的前項(xiàng)和………………①
…………②
所以①②得:----------------------11分
------------------------13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
已知數(shù)列中,,,且
(1)設(shè),證明是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足關(guān)系式:p是常數(shù)).
(Ⅰ)求
(Ⅱ)猜想的通項(xiàng)公式,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為,若,,則當(dāng)取最小值時(shí),等于
A.6B.7 C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與軸的另一個(gè)交點(diǎn)為,且,數(shù)列的前項(xiàng)的和為,點(diǎn)在函數(shù)的圖象上.
(1)求函數(shù)的解析式;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列中,,若數(shù)列的前項(xiàng)和為,則的值為
A.18B.16C.15D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,且,,則數(shù)列的通項(xiàng)公式為、
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是由正數(shù)組成的等差數(shù)列,是由正數(shù)組成的等比數(shù)列,且,,則必有                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列中,,前10項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明為等比數(shù)列,并求的前四項(xiàng)之和。
(3)設(shè),求的前五項(xiàng)之和。

查看答案和解析>>

同步練習(xí)冊(cè)答案