【題目】如圖所示,四棱錐的底面是梯形,且,平面,是中點(diǎn),.
(1)求證:;
(2)若,,求三棱錐的高.
【答案】(1)證明見解析
(2)
【解析】
(1)取的中點(diǎn),連結(jié),,可得為平行四邊形,從而得到,根據(jù)平面,得到,從而得到.(2)設(shè)點(diǎn)為的中點(diǎn),連結(jié),證明為正三角形,推出,求出,再證明,從而得到平面,然后得到三棱錐的高.
(1)證明:取的中點(diǎn),連結(jié),,如圖所示.
因?yàn)辄c(diǎn)是中點(diǎn),
所以且.
又因?yàn)?/span>且,
所以且,
所以四邊形為平行四邊形,
所以,
因?yàn)?/span>平面,平面,
所以.
所以.
(2)解:設(shè)點(diǎn)為的中點(diǎn),連結(jié),如圖所示,
因?yàn)?/span>,,
由(1)知,,
又因?yàn)?/span>,所以,
所以,
所以為正三角形,
所以,且.
因?yàn)?/span>平面,,
所以平面.
因?yàn)?/span>平面,
所以,
又因?yàn)?/span>,所以平面.
所以三棱錐的高為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).(是常數(shù),且()
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)在處取得極值時(shí),若關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(Ⅲ)求證:當(dāng)時(shí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績(jī)、高中學(xué)業(yè)水平考試成績(jī),參考高中學(xué)生綜合素質(zhì)評(píng)價(jià)信息”進(jìn)行人才選拔。我校2018級(jí)高一年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某商場(chǎng)銷售的商品A進(jìn)行市場(chǎng)銷售量調(diào)研,通過對(duì)該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價(jià)格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價(jià)格為3元/件時(shí),每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請(qǐng)你試確定該商品銷售價(jià)格的值,使該商場(chǎng)每日銷售該商品所獲得的利潤(rùn)(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(1)求不等式f(x)>8的解;
(2)若α,β≥1,f(α)+f(β)=4,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若存在極小值點(diǎn)與極大值點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)與不重合),則下列結(jié)論正確的是____.
①存在點(diǎn),使得平面平面;
②存在點(diǎn),使得平面;
③的面積不可能等于;
④若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過2小時(shí),請(qǐng)完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
每周平均課外閱讀時(shí)間不超過2小時(shí) | |||
每周平均課外閱讀時(shí)間超過2小時(shí) | |||
總計(jì) |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,,為的中點(diǎn).
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com