(本題滿分16分)某公司將進貨單價為8元一個的商品按10元一個銷售,每天可賣出100個,若這種商品的銷售價每個上漲1元,則銷售量就減少10個.
(1)求函數(shù)解析式;
(1)求銷售價為13元時每天的銷售利潤;
(2)如果銷售利潤為360元,那么銷售價上漲了幾元?
(1);(2)350元;(3)4元。

試題分析:(1)設(shè)這種商品的銷售價每個上漲元,則每天銷售量為     ………2分
∴銷售利潤為    …………8分
(2)當(dāng)銷售價為13元時,即
答:銷售價為13元時每天的銷售利潤350元.…………………12分
(2)當(dāng)                
答: 銷售利潤為360元,那么銷售價上漲了4元.…………………16分
點評:二次函數(shù)是我們比較熟悉的基本函數(shù),建立二次函數(shù)模型可解決很多實際應(yīng)用題,但在求函數(shù)的解析式時,一定要記得注明函數(shù)的定義域。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知為定義在上的奇函數(shù),當(dāng)時,;
(1)求上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則        。(指出范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于函數(shù),給出下列四個命題:①該函數(shù)是以為最小正周期的周期函數(shù);②當(dāng)且僅當(dāng) (k∈Z)時,該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于 (k∈Z)對稱;
④當(dāng)且僅當(dāng) (k∈Z)時,0<.
其中正確命題的序號是_______   (請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),滿足,,,,則函數(shù)的圖象在處的切線方程為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:若函數(shù)對于其定義域內(nèi)的某一數(shù),有,則稱的一個不動點. 已知函數(shù).
(1)當(dāng),時,求函數(shù)的不動點;
(2)若對任意的實數(shù)b,函數(shù)恒有兩個不動點,求實數(shù)的取值范圍;
(3)在(2)的條件下,若圖象上兩個點A、B的橫坐標(biāo)是函數(shù)的不動點,且線段AB的中點C在函數(shù)的圖象上,求實數(shù)b的最小值.
(參考公式:若,則線段AB的中點坐標(biāo)為)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12)
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個矩形的草坪,并建立如圖平面直角坐標(biāo)系,且,,另外的內(nèi)部有一文物保護區(qū)不能占用,經(jīng)測量,, ,.
(1)求直線的方程;
(2)應(yīng)如何設(shè)計才能使草坪的占地面積最大?并求最大面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

具有性質(zhì):的函數(shù),我們稱為滿足“倒負”變換的函數(shù),下列函數(shù):①;②;③中滿足“倒負”變換的函數(shù)是(  )
A.①②B.①③C.②③D.只有①

查看答案和解析>>

同步練習(xí)冊答案