已知兩個(gè)正數(shù)滿足,則的最大值是   

 

【答案】

2

【解析】

試題分析:根據(jù)題意,由于兩個(gè)正數(shù)滿足則對于,故可知答案為2.

考點(diǎn):均值不等式

點(diǎn)評:主要是考查了對數(shù)的運(yùn)算性質(zhì)以及均值不等式求解最值的運(yùn)用,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)x,y滿足x+y=4,則使不等式
1
x
+
4
y
≥m
恒成立的實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于問題:“已知兩個(gè)正數(shù)x,y滿足x+y=2,求
1
x
+
4
y
的最小值”,給出如下一種解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)
,
Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2
,
當(dāng)且僅當(dāng)
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
時(shí),
1
x
+
4
y
取最小值
9
2

參考上述解法,已知A,B,C是△ABC的三個(gè)內(nèi)角,則
1
A
+
9
B+C
的最小值為
16
π
16
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)a,b滿足a+b=ab,則a+b的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省高三2月月考文科數(shù)學(xué)試卷 題型:選擇題

已知兩個(gè)正數(shù)滿足,則取最小值時(shí)的值分別為  

    A、          B、        C、           D、

 

查看答案和解析>>

同步練習(xí)冊答案